tune.analysis
ExperimentAnalysis Objects
class ExperimentAnalysis()
Analyze results from a Tune experiment.
best_trial
@property
def best_trial() -> Trial
Get the best trial of the experiment
The best trial is determined by comparing the last trial results
using the metric and mode parameters passed to tune.run().
If you didn't pass these parameters, use
get_best_trial(metric, mode, scope) instead.
best_config
@property
def best_config() -> Dict
Get the config of the best trial of the experiment
The best trial is determined by comparing the last trial results
using the metric and mode parameters passed to tune.run().
If you didn't pass these parameters, use
get_best_config(metric, mode, scope) instead.
results
@property
def results() -> Dict[str, Dict]
Get the last result of all the trials of the experiment
get_best_trial
def get_best_trial(metric: Optional[str] = None,
mode: Optional[str] = None,
scope: str = "last",
filter_nan_and_inf: bool = True) -> Optional[Trial]
Retrieve the best trial object.
Compares all trials' scores on metric.
If metric is not specified, self.default_metric will be used.
If mode is not specified, self.default_mode will be used.
These values are usually initialized by passing the metric and
mode parameters to tune.run().
Arguments:
metricstr - Key for trial info to order on. Defaults toself.default_metric.modestr - One of [min, max]. Defaults toself.default_mode.scopestr - One of [all, last, avg, last-5-avg, last-10-avg]. Ifscope=last, only look at each trial's final step formetric, and compare across trials based onmode=[min,max]. Ifscope=avg, consider the simple average over all steps formetricand compare across trials based onmode=[min,max]. Ifscope=last-5-avgorscope=last-10-avg, consider the simple average over the last 5 or 10 steps formetricand compare across trials based onmode=[min,max]. Ifscope=all, find each trial's min/max score formetricbased onmode, and compare trials based onmode=[min,max].filter_nan_and_infbool - If True (default), NaN or infinite values are disregarded and these trials are never selected as the best trial.
get_best_config
def get_best_config(metric: Optional[str] = None,
mode: Optional[str] = None,
scope: str = "last") -> Optional[Dict]
Retrieve the best config corresponding to the trial.
Compares all trials' scores on metric.
If metric is not specified, self.default_metric will be used.
If mode is not specified, self.default_mode will be used.
These values are usually initialized by passing the metric and
mode parameters to tune.run().
Arguments:
metricstr - Key for trial info to order on. Defaults toself.default_metric.modestr - One of [min, max]. Defaults toself.default_mode.scopestr - One of [all, last, avg, last-5-avg, last-10-avg]. Ifscope=last, only look at each trial's final step formetric, and compare across trials based onmode=[min,max]. Ifscope=avg, consider the simple average over all steps formetricand compare across trials based onmode=[min,max]. Ifscope=last-5-avgorscope=last-10-avg, consider the simple average over the last 5 or 10 steps formetricand compare across trials based onmode=[min,max]. Ifscope=all, find each trial's min/max score formetricbased onmode, and compare trials based onmode=[min,max].
best_result
@property
def best_result() -> Dict
Get the last result of the best trial of the experiment
The best trial is determined by comparing the last trial results
using the metric and mode parameters passed to tune.run().
If you didn't pass these parameters, use
get_best_trial(metric, mode, scope).last_result instead.