mlos_bench.optimizers.mlos_core_optimizer
A wrapper for mlos_core optimizers for mlos_bench.
Classes
A wrapper class for the mlos_core optimizers. |
Module Contents
- class mlos_bench.optimizers.mlos_core_optimizer.MlosCoreOptimizer(tunables: mlos_bench.tunables.tunable_groups.TunableGroups, config: dict, global_config: dict | None = None, service: mlos_bench.services.base_service.Service | None = None)[source]
Bases:
mlos_bench.optimizers.base_optimizer.Optimizer
A wrapper class for the mlos_core optimizers.
Create a new optimizer for the given configuration space defined by the tunables.
- Parameters:
tunables (TunableGroups) – The tunables to optimize.
config (dict) – Free-format key/value pairs of configuration parameters to pass to the optimizer.
global_config (Optional[dict])
service (Optional[Service])
- __exit__(ex_type: Type[BaseException] | None, ex_val: BaseException | None, ex_tb: types.TracebackType | None) Literal[False] [source]
Exit the context of the optimizer.
- Parameters:
ex_type (Optional[Type[BaseException]])
ex_val (Optional[BaseException])
ex_tb (Optional[types.TracebackType])
- Return type:
Literal[False]
- bulk_register(configs: Sequence[dict], scores: Sequence[Dict[str, mlos_bench.tunables.tunable.TunableValue] | None], status: Sequence[mlos_bench.environments.status.Status] | None = None) bool [source]
Pre-load the optimizer with the bulk data from previous experiments.
- Parameters:
configs (Sequence[dict]) – Records of tunable values from other experiments.
scores (Sequence[Optional[Dict[str, TunableValue]]]) – Benchmark results from experiments that correspond to configs.
status (Optional[Sequence[Status]]) – Status of the experiments that correspond to configs.
- Returns:
is_not_empty – True if there is data to register, false otherwise.
- Return type:
- get_best_observation() Tuple[Dict[str, float], mlos_bench.tunables.tunable_groups.TunableGroups] | Tuple[None, None] [source]
Get the best observation so far.
- Returns:
(value, tunables) – The best value and the corresponding configuration. (None, None) if no successful observation has been registered yet.
- Return type:
Tuple[Dict[str, float], TunableGroups]
- register(tunables: mlos_bench.tunables.tunable_groups.TunableGroups, status: mlos_bench.environments.status.Status, score: Dict[str, mlos_bench.tunables.tunable.TunableValue] | None = None) Dict[str, float] | None [source]
Register the observation for the given configuration.
- Parameters:
tunables (TunableGroups) – The configuration that has been benchmarked. Usually it’s the same config that the .suggest() method returned.
status (Status) – Final status of the experiment (e.g., SUCCEEDED or FAILED).
score (Optional[Dict[str, TunableValue]]) – A dict with the final benchmark results. None if the experiment was not successful.
- Returns:
value – Benchmark scores extracted (and possibly transformed) from the dataframe that’s being MINIMIZED.
- Return type:
- suggest() mlos_bench.tunables.tunable_groups.TunableGroups [source]
Generate the next suggestion. Base class’ implementation increments the iteration count and returns the current values of the tunables.
- Returns:
tunables – The next configuration to benchmark. These are the same tunables we pass to the constructor, but with the values set to the next suggestion.
- Return type: