Agent Tracking with AgentOps
AgentOps provides session replays, metrics, and monitoring for AI agents.
At a high level, AgentOps gives you the ability to monitor LLM calls, costs, latency, agent failures, multi-agent interactions, tool usage, session-wide statistics, and more. For more info, check out the AgentOps Repo.
Overview Dashboard
Session Replays
Adding AgentOps to an existing Autogen service.
To get started, you’ll need to install the AgentOps package and set an API key.
AgentOps automatically configures itself when it’s initialized meaning your agent run data will be tracked and logged to your AgentOps account right away.
Some extra dependencies are needed for this notebook, which can be installed via pip:
pip install autogen-agentchat~=0.2 agentops
For more information, please refer to the installation guide.
Set an API key
By default, the AgentOps init()
function will look for an environment
variable named AGENTOPS_API_KEY
. Alternatively, you can pass one in as
an optional parameter.
Create an account and obtain an API key at AgentOps.ai
import agentops
from autogen import ConversableAgent, UserProxyAgent, config_list_from_json
agentops.init(api_key="...")
🖇 AgentOps: Session Replay: https://app.agentops.ai/drilldown?session_id=8bfaeed1-fd51-4c68-b3ec-276b1a3ce8a4
UUID('8bfaeed1-fd51-4c68-b3ec-276b1a3ce8a4')
Autogen will now start automatically tracking - LLM prompts and completions - Token usage and costs - Agent names and actions - Correspondence between agents - Tool usage - Errors
Simple Chat Example
import agentops
# When initializing AgentOps, you can pass in optional tags to help filter sessions
agentops.init(tags=["simple-autogen-example"])
# Create the agent that uses the LLM.
config_list = config_list_from_json(env_or_file="OAI_CONFIG_LIST")
assistant = ConversableAgent("agent", llm_config={"config_list": config_list})
# Create the agent that represents the user in the conversation.
user_proxy = UserProxyAgent("user", code_execution_config=False)
# Let the assistant start the conversation. It will end when the user types "exit".
assistant.initiate_chat(user_proxy, message="How can I help you today?")
# Close your AgentOps session to indicate that it completed.
agentops.end_session("Success")
How can I help you today?
--------------------------------------------------------------------------------
2+2
--------------------------------------------------------------------------------
>>>>>>>> USING AUTO REPLY...
2 + 2 equals 4.
--------------------------------------------------------------------------------
🖇 AgentOps: This run's cost $0.000960
🖇 AgentOps: Session Replay: https://app.agentops.ai/drilldown?session_id=8bfaeed1-fd51-4c68-b3ec-276b1a3ce8a4
You can view data on this run at app.agentops.ai.
The dashboard will display LLM events for each message sent by each agent, including those made by the human user.
Tool Example
AgentOps also tracks when Autogen agents use tools. You can find more information on this example in tool-use.ipynb
from typing import Annotated, Literal
from autogen import ConversableAgent, config_list_from_json, register_function
agentops.start_session(tags=["autogen-tool-example"])
Operator = Literal["+", "-", "*", "/"]
def calculator(a: int, b: int, operator: Annotated[Operator, "operator"]) -> int:
if operator == "+":
return a + b
elif operator == "-":
return a - b
elif operator == "*":
return a * b
elif operator == "/":
return int(a / b)
else:
raise ValueError("Invalid operator")
config_list = config_list_from_json(env_or_file="OAI_CONFIG_LIST")
# Create the agent that uses the LLM.
assistant = ConversableAgent(
name="Assistant",
system_message="You are a helpful AI assistant. "
"You can help with simple calculations. "
"Return 'TERMINATE' when the task is done.",
llm_config={"config_list": config_list},
)
# The user proxy agent is used for interacting with the assistant agent
# and executes tool calls.
user_proxy = ConversableAgent(
name="User",
llm_config=False,
is_termination_msg=lambda msg: msg.get("content") is not None and "TERMINATE" in msg["content"],
human_input_mode="NEVER",
)
assistant.register_for_llm(name="calculator", description="A simple calculator")(calculator)
user_proxy.register_for_execution(name="calculator")(calculator)
# Register the calculator function to the two agents.
register_function(
calculator,
caller=assistant, # The assistant agent can suggest calls to the calculator.
executor=user_proxy, # The user proxy agent can execute the calculator calls.
name="calculator", # By default, the function name is used as the tool name.
description="A simple calculator", # A description of the tool.
)
# Let the assistant start the conversation. It will end when the user types "exit".
user_proxy.initiate_chat(assistant, message="What is (1423 - 123) / 3 + (32 + 23) * 5?")
agentops.end_session("Success")
🖇 AgentOps: Session Replay: https://app.agentops.ai/drilldown?session_id=880c206b-751e-4c23-9313-8684537fc04d
/Users/braelynboynton/Developer/agentops/autogen/autogen/agentchat/conversable_agent.py:2489: UserWarning: Function 'calculator' is being overridden.
warnings.warn(f"Function '{tool_sig['function']['name']}' is being overridden.", UserWarning)
/Users/braelynboynton/Developer/agentops/autogen/autogen/agentchat/conversable_agent.py:2408: UserWarning: Function 'calculator' is being overridden.
warnings.warn(f"Function '{name}' is being overridden.", UserWarning)
🖇 AgentOps: This run's cost $0.001800
🖇 AgentOps: Session Replay: https://app.agentops.ai/drilldown?session_id=880c206b-751e-4c23-9313-8684537fc04d
What is (1423 - 123) / 3 + (32 + 23) * 5?
--------------------------------------------------------------------------------
>>>>>>>> USING AUTO REPLY...
***** Suggested tool call (call_aINcGyo0Xkrh9g7buRuhyCz0): calculator *****
Arguments:
{
"a": 1423,
"b": 123,
"operator": "-"
}
***************************************************************************
--------------------------------------------------------------------------------
>>>>>>>> EXECUTING FUNCTION calculator...
***** Response from calling tool (call_aINcGyo0Xkrh9g7buRuhyCz0) *****
1300
**********************************************************************
--------------------------------------------------------------------------------
>>>>>>>> USING AUTO REPLY...
***** Suggested tool call (call_prJGf8V0QVT7cbD91e0Fcxpb): calculator *****
Arguments:
{
"a": 1300,
"b": 3,
"operator": "/"
}
***************************************************************************
--------------------------------------------------------------------------------
>>>>>>>> EXECUTING FUNCTION calculator...
***** Response from calling tool (call_prJGf8V0QVT7cbD91e0Fcxpb) *****
433
**********************************************************************
--------------------------------------------------------------------------------
>>>>>>>> USING AUTO REPLY...
***** Suggested tool call (call_CUIgHRsySLjayDKuUphI1TGm): calculator *****
Arguments:
{
"a": 32,
"b": 23,
"operator": "+"
}
***************************************************************************
--------------------------------------------------------------------------------
>>>>>>>> EXECUTING FUNCTION calculator...
***** Response from calling tool (call_CUIgHRsySLjayDKuUphI1TGm) *****
55
**********************************************************************
--------------------------------------------------------------------------------
>>>>>>>> USING AUTO REPLY...
***** Suggested tool call (call_L7pGtBLUf9V0MPL90BASyesr): calculator *****
Arguments:
{
"a": 55,
"b": 5,
"operator": "*"
}
***************************************************************************
--------------------------------------------------------------------------------
>>>>>>>> EXECUTING FUNCTION calculator...
***** Response from calling tool (call_L7pGtBLUf9V0MPL90BASyesr) *****
275
**********************************************************************
--------------------------------------------------------------------------------
>>>>>>>> USING AUTO REPLY...
***** Suggested tool call (call_Ygo6p4XfcxRjkYBflhG3UVv6): calculator *****
Arguments:
{
"a": 433,
"b": 275,
"operator": "+"
}
***************************************************************************
--------------------------------------------------------------------------------
>>>>>>>> EXECUTING FUNCTION calculator...
***** Response from calling tool (call_Ygo6p4XfcxRjkYBflhG3UVv6) *****
708
**********************************************************************
--------------------------------------------------------------------------------
>>>>>>>> USING AUTO REPLY...
The result of the calculation is 708.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
>>>>>>>> USING AUTO REPLY...
TERMINATE
--------------------------------------------------------------------------------
You can see your run in action at
app.agentops.ai. In this example, the
AgentOps dashboard will show: - Agents talking to each other - Each use
of the calculator
tool - Each call to OpenAI for LLM use