Skip to main content

oai.bedrock

Create a compatible client for the Amazon Bedrock Converse API.

Example usage: Install the boto3 package by running pip install --upgrade boto3.

import autogen

config_list = [ { "api_type": "bedrock", "model": "meta.llama3-1-8b-instruct-v1:0", "aws_region": "us-west-2", "aws_access_key": "", "aws_secret_key": "", "price" : [0.003, 0.015] } ]

assistant = autogen.AssistantAgent("assistant", llm_config={"config_list": config_list})

BedrockClient

class BedrockClient()

Client for Amazon's Bedrock Converse API.

__init__

def __init__(**kwargs: Any)

Initialises BedrockClient for Amazon's Bedrock Converse API

message_retrieval

def message_retrieval(response)

Retrieve the messages from the response.

parse_custom_params

def parse_custom_params(params: Dict[str, Any])

Parses custom parameters for logic in this client class

parse_params

def parse_params(
params: Dict[str, Any]) -> tuple[Dict[str, Any], Dict[str, Any]]

Loads the valid parameters required to invoke Bedrock Converse Returns a tuple of (base_params, additional_params)

create

def create(params)

Run Amazon Bedrock inference and return AutoGen response

cost

def cost(response: ChatCompletion) -> float

Calculate the cost of the response.

get_usage

@staticmethod
def get_usage(response) -> Dict

Get the usage of tokens and their cost information.

extract_system_messages

def extract_system_messages(messages: List[dict]) -> List

Extract the system messages from the list of messages.

Arguments:

  • messages list[dict] - List of messages.

Returns:

  • List[SystemMessage] - List of System messages.

oai_messages_to_bedrock_messages

def oai_messages_to_bedrock_messages(
messages: List[Dict[str, Any]], has_tools: bool,
supports_system_prompts: bool) -> List[Dict]

Convert messages from OAI format to Bedrock format. We correct for any specific role orders and types, etc. AWS Bedrock requires messages to alternate between user and assistant roles. This function ensures that the messages are in the correct order and format for Bedrock by inserting "Please continue" messages as needed. This is the same method as the one in the Autogen Anthropic client

parse_image

def parse_image(image_url: str) -> Tuple[bytes, str]

Try to get the raw data from an image url.

Ref: https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_ImageSource.html returns a tuple of (Image Data, Content Type)

format_tool_calls

def format_tool_calls(content)

Converts Converse API response tool calls to AutoGen format

convert_stop_reason_to_finish_reason

def convert_stop_reason_to_finish_reason(
stop_reason: str
) -> Literal["stop", "length", "tool_calls", "content_filter"]

Converts Bedrock finish reasons to our finish reasons, according to OpenAI:

  • stop: if the model hit a natural stop point or a provided stop sequence,
  • length: if the maximum number of tokens specified in the request was reached,
  • content_filter: if content was omitted due to a flag from our content filters,
  • tool_calls: if the model called a tool

calculate_cost

def calculate_cost(input_tokens: int, output_tokens: int,
model_id: str) -> float

Calculate the cost of the completion using the Bedrock pricing.