oai.ollama
Create an OpenAI-compatible client using Ollama's API.
Example:
llm_config={
-
"config_list"
- [{ -
"api_type"
- "ollama", -
"model"
- "mistral:7b-instruct-v0.3-q6_K" } ]}agent = autogen.AssistantAgent("my_agent", llm_config=llm_config)
Install Ollama's python library using: pip install --upgrade ollama
Resources:
OllamaClient
class OllamaClient()
Client for Ollama's API.
__init__
def __init__(**kwargs)
Note that no api_key or environment variable is required for Ollama.
Arguments:
None
message_retrieval
def message_retrieval(response) -> List
Retrieve and return a list of strings or a list of Choice.Message from the response.
NOTE: if a list of Choice.Message is returned, it currently needs to contain the fields of OpenAI's ChatCompletion Message object, since that is expected for function or tool calling in the rest of the codebase at the moment, unless a custom agent is being used.
get_usage
@staticmethod
def get_usage(response) -> Dict
Return usage summary of the response using RESPONSE_USAGE_KEYS.
parse_params
def parse_params(params: Dict[str, Any]) -> Dict[str, Any]
Loads the parameters for Ollama API from the passed in parameters and returns a validated set. Checks types, ranges, and sets defaults
oai_messages_to_ollama_messages
def oai_messages_to_ollama_messages(messages: list[Dict[str, Any]],
tools: list) -> list[dict[str, Any]]
Convert messages from OAI format to Ollama's format. We correct for any specific role orders and types, and convert tools to messages (as Ollama can't use tool messages)
response_to_tool_call
def response_to_tool_call(response_string: str) -> Any
Attempts to convert the response to an object, aimed to align with function format [{},{}]
is_valid_tool_call_item
def is_valid_tool_call_item(call_item: dict) -> bool
Check that a dictionary item has at least 'name', optionally 'arguments' and no other keys to match a tool call JSON