promptflow.azure module#
- class promptflow.azure.PFClient(credential: Optional[TokenCredential] = None, subscription_id: Optional[str] = None, resource_group_name: Optional[str] = None, workspace_name: Optional[str] = None, **kwargs)#
Bases:
object
A client class to interact with Promptflow service.
Use this client to manage promptflow resources, e.g. runs.
- Parameters:
credential (TokenCredential) – Credential to use for authentication, optional
subscription_id (Optional[str]) – Azure subscription ID, optional for registry assets only, optional
resource_group_name (Optional[str]) – Azure resource group, optional for registry assets only, optional
workspace_name (Optional[str]) – Workspace to use in the client, optional for non workspace dependent operations only, optional.
kwargs (dict) – A dictionary of additional configuration parameters.
- property flows#
Return the flow operation object that can manage flows.
- classmethod from_config(credential: TokenCredential, *, path: Optional[Union[str, PathLike]] = None, file_name=None, **kwargs) PFClient #
Return a PFClient object connected to Azure Machine Learning workspace.
Reads workspace configuration from a file. Throws an exception if the config file can’t be found.
The method provides a simple way to reuse the same workspace across multiple Python notebooks or projects. Users can save the workspace Azure Resource Manager (ARM) properties using the [workspace.write_config](https://aka.ms/ml-workspace-class) method, and use this method to load the same workspace in different Python notebooks or projects without retyping the workspace ARM properties.
- Parameters:
credential (TokenCredential) – The credential object for the workspace.
path (Union[os.PathLike, str]) – The path to the config file or starting directory to search. The parameter defaults to starting the search in the current directory. optional
file_name (str) – Allows overriding the config file name to search for when path is a directory path. (Default value = None)
- get_details(run: Union[str, Run], max_results: int = 100, all_results: bool = False) DataFrame #
Get the details from the run including inputs and outputs.
Note
If all_results is set to True, max_results will be overwritten to sys.maxsize.
- Parameters:
run (Union[str, Run]) – The run name or run object
max_results (int) – The max number of runs to return, defaults to 100
all_results (bool) – Whether to return all results, defaults to False
- Raises:
RunOperationParameterError – If max_results is not a positive integer.
- Returns:
The details data frame.
- Return type:
pandas.DataFrame
- get_metrics(run: Union[str, Run]) dict #
Print run metrics to the console.
- Parameters:
run (Union[str, Run]) – Run object or name of the run.
- Returns:
The run’s metrics
- Return type:
dict
- property ml_client#
Return a client to interact with Azure ML services.
- run(flow: Optional[Union[str, PathLike]] = None, *, data: Optional[Union[str, PathLike]] = None, run: Optional[Union[str, Run]] = None, column_mapping: Optional[dict] = None, variant: Optional[str] = None, connections: Optional[dict] = None, environment_variables: Optional[dict] = None, name: Optional[str] = None, display_name: Optional[str] = None, tags: Optional[Dict[str, str]] = None, resume_from: Optional[Union[str, Run]] = None, code: Optional[Union[str, PathLike]] = None, init: Optional[dict] = None, **kwargs) Run #
Run flow against provided data or run.
Note
at least one of data or run must be provided.
Data can be local file or remote path. - Example: - data = “path/to/local/file” - data = “azureml:data_name:data_version” - data = “azureml://datastores/datastore_name/path/to/file” - data = “https://example.com/data.jsonl”
Column mapping is a mapping from flow input name to specified values. If specified, the flow will be executed with provided value for specified inputs. The value can be:
- from data:
data.col1
- from run:
run.inputs.col1
: if need reference run’s inputsrun.output.col1
: if need reference run’s outputs
- Example:
{"ground_truth": "${data.answer}", "prediction": "${run.outputs.answer}"}
- Parameters:
flow (Union[str, PathLike]) – path to flow directory to run evaluation
data (Union[str, PathLike]) – pointer to test data (of variant bulk runs) for eval runs
run (Union[str, Run]) – flow run id or flow run, keep lineage between current run and variant runs, batch outputs can be referenced as ${run.outputs.col_name} in inputs_mapping
column_mapping (dict) – define a data flow logic to map input data.
variant (str) – Node & variant name in format of ${node_name.variant_name}, will use default variant if not specified.
connections (dict) – Overwrite node level connections with provided value. Example:
{"node1": {"connection": "new_connection", "deployment_name": "gpt-35-turbo"}}
environment_variables (dict) – Environment variables to set by specifying a property path and value. Example:
{"key1": "${my_connection.api_key}", "key2"="value2"}
The value reference to connection keys will be resolved to the actual value, and all environment variables specified will be set into os.environ.name (str) – Name of the run.
display_name (str) – Display name of the run.
tags (Dict[str, str]) – Tags of the run.
resume_from (str) – Create run resume from an existing run.
code (Union[str, PathLike]) – Path to the code directory to run.
init (dict) – Initialization parameters for flex flow, only supported when flow is callable class.
- Returns:
flow run info.
- Return type:
- property runs#
Return the run operation object that can manage runs.