pf#
Manage prompt flow resources with the prompt flow CLI.
Command |
Description |
---|---|
Manage flows. |
|
Manage connections. |
|
Manage runs. |
|
Init or list tools. |
|
Manage config for current user. |
|
Manage prompt flow service. |
|
Upgrade prompt flow CLI. |
|
Manage traces. |
pf flow#
Manage promptflow flow flows.
Command |
Description |
---|---|
Initialize a prompt flow directory. |
|
Test the prompt flow or flow node. |
|
Validate a flow and generate |
|
Build a flow for further sharing or deployment. |
|
Serve a flow as an endpoint. |
pf flow init#
Initialize a prompt flow directory.
pf flow init [--flow]
[--entry]
[--function]
[--prompt-template]
[--type]
[--yes]
Examples#
Create a flow folder with code, prompts and YAML specification of the flow.
pf flow init --flow <path-to-flow-direcotry>
Create an evaluation prompt flow
pf flow init --flow <path-to-flow-direcotry> --type evaluation
Create a flow in existing folder
pf flow init --flow <path-to-existing-folder> --entry <entry.py> --function <function-name> --prompt-template <path-to-prompt-template.md>
Optional Parameters#
--flow
The flow name to create.
--entry
The entry file name.
--function
The function name in entry file.
--prompt-template
The prompt template parameter and assignment.
--type
The initialized flow type.
accepted value: standard, evaluation, chat
--yes --assume-yes -y
Automatic yes to all prompts; assume ‘yes’ as answer to all prompts and run non-interactively.
pf flow test#
Test the prompt flow or flow node.
pf flow test --flow
[--inputs]
[--node]
[--variant]
[--debug]
[--interactive]
[--verbose]
[--ui]
[--collection]
Examples#
Test the flow.
pf flow test --flow <path-to-flow-directory>
Test the flow from json
file.
pf flow test --flow <path-to-flow-directory> --inputs inputs.json
Test the flow with first line from jsonl
file.
pf flow test --flow <path-to-flow-directory> --inputs inputs.jsonl
Test the flow with input values.
pf flow test --flow <path-to-flow-directory> --inputs data_key1=data_val1 data_key2=data_val2
Test the flow with specified variant node.
pf flow test --flow <path-to-flow-directory> --variant '${node_name.variant_name}'
Test the single node in the flow.
pf flow test --flow <path-to-flow-directory> --node <node_name>
Debug the single node in the flow.
pf flow test --flow <path-to-flow-directory> --node <node_name> --debug
Chat in the flow.
pf flow test --flow <path-to-flow-directory> --node <node_name> --interactive
Chat in the chat window.
pf flow test --flow <path-to-flow-directory> --ui
Test the flow while log traces to a specific collection.
pf flow test --flow <path-to-flow-directory> --collection <collection>
Required Parameter#
--flow
The flow directory to test.
Optional Parameters#
--inputs
Input data for the flow. Example: –inputs data1=data1_val data2=data2_val
--node
The node name in the flow need to be tested.
--variant
Node & variant name in format of ${node_name.variant_name}.
--debug
Debug the single node in the flow.
--interactive
Start a interactive chat session for chat flow.
--verbose
Displays the output for each step in the chat flow.
--ui
The flag to start an interactive chat experience in local chat window.
pf flow validate#
Validate the prompt flow and generate a flow.tools.json
under .promptflow
. This file is required when using flow as a component in a Azure ML pipeline.
pf flow validate --source
[--debug]
[--verbose]
Examples#
Validate the flow.
pf flow validate --source <path-to-flow>
Required Parameter#
--source
The flow source to validate.
pf flow build#
Build a flow for further sharing or deployment.
pf flow build --source
--output
--format
[--variant]
[--verbose]
[--debug]
Examples#
Build a flow as docker, which can be built into Docker image via docker build
.
pf flow build --source <path-to-flow> --output <output-path> --format docker
Build a flow as docker with specific variant.
pf flow build --source <path-to-flow> --output <output-path> --format docker --variant '${node_name.variant_name}'
Required Parameter#
--source
The flow or run source to be used.
--output
The folder to output built flow. Need to be empty or not existed.
--format
The format to build flow into
Optional Parameters#
--variant
Node & variant name in format of ${node_name.variant_name}.
--verbose
Show more details for each step during build.
--debug
Show debug information during build.
pf flow serve#
Serving a flow as an endpoint.
pf flow serve --source
[--port]
[--host]
[--environment-variables]
[--verbose]
[--debug]
[--skip-open-browser]
[--engine]
Examples#
Serve flow as an endpoint.
pf flow serve --source <path-to-flow>
Serve flow as an endpoint with specific port and host.
pf flow serve --source <path-to-flow> --port <port> --host <host> --environment-variables key1="`${my_connection.api_key}`" key2="value2"
Serve flow as an endpoint with specific port, host, environment-variables and fastapi serving engine.
pf flow serve --source <path-to-flow> --port <port> --host <host> --environment-variables key1="`${my_connection.api_key}`" key2="value2" --engine fastapi
Required Parameter#
--source
The flow or run source to be used.
Optional Parameters#
--port
The port on which endpoint to run.
--host
The host of endpoint.
--environment-variables
Environment variables to set by specifying a property path and value. Example: –environment-variable key1=”`${my_connection.api_key}`” key2=”value2”. The value reference to connection keys will be resolved to the actual value, and all environment variables specified will be set into os.environ
.
--verbose
Show more details for each step during serve.
--debug
Show debug information during serve.
--skip-open-browser
Skip opening browser after serve. Store true parameter.
--engine
Switch python serving engine between flask
amd fastapi
, default to flask
.
pf connection#
Manage prompt flow connections.
Command |
Description |
---|---|
Create a connection. |
|
Update a connection. |
|
Show details of a connection. |
|
List all the connection. |
|
Delete a connection. |
pf connection create#
Create a connection.
pf connection create --file
[--name]
[--set]
Examples#
Create a connection with YAML file.
pf connection create -f <yaml-filename>
Create a connection with YAML file with override.
pf connection create -f <yaml-filename> --set api_key="<api-key>"
Create a custom connection with .env file; note that overrides specified by --set
will be ignored.
pf connection create -f .env --name <name>
Required Parameter#
--file -f
Local path to the YAML file containing the prompt flow connection specification.
Optional Parameters#
--name -n
Name of the connection.
--set
Update an object by specifying a property path and value to set. Example: –set property1.property2=.
pf connection update#
Update a connection.
pf connection update --name
[--set]
Example#
Update a connection.
pf connection update -n <name> --set api_key="<api-key>"
Required Parameter#
--name -n
Name of the connection.
Optional Parameter#
--set
Update an object by specifying a property path and value to set. Example: –set property1.property2=.
pf connection show#
Show details of a connection.
pf connection show --name
Required Parameter#
--name -n
Name of the connection.
pf connection list#
List all the connection.
pf connection list
pf connection delete#
Delete a connection.
pf connection delete --name
Required Parameter#
--name -n
Name of the connection.
pf run#
Manage prompt flow runs.
Command |
Description |
---|---|
Create a run. |
|
Update a run metadata, including display name, description and tags. |
|
Stream run logs to the console. |
|
List runs. |
|
Show details for a run. |
|
Preview a run’s intput(s) and output(s). |
|
Print run metrics to the console. |
|
Visualize a run. |
|
Archive a run. |
|
Restore an archived run. |
pf run create#
Create a run.
pf run create [--file]
[--flow]
[--data]
[--column-mapping]
[--run]
[--variant]
[--stream]
[--environment-variables]
[--connections]
[--set]
[--source]
[--resume-from] # require promptflow>=1.8.0, and original run created with promptflow>=1.8.0
Examples#
Create a run with YAML file.
pf run create -f <yaml-filename>
Create a run with YAML file and replace another data in the YAML file.
pf run create -f <yaml-filename> --data <path-to-new-data-file-relative-to-yaml-file>
Create a run from flow directory and reference a run.
pf run create --flow <path-to-flow-directory> --data <path-to-data-file> --column-mapping groundtruth='${data.answer}' prediction='${run.outputs.category}' --run <run-name> --variant '${summarize_text_content.variant_0}' --stream
Create a run from an existing run record folder.
pf run create --source <path-to-run-folder>
Create a run by specifying the resume_from
. (Require promptflow>=1.8.0, and original run created with promptflow>=1.8.0)
Succeeded line result of the original run will be reused, only remaining/failed lines will be run.
pf run create --resume-from <original-run-name>
pf run create --resume-from <original-run-name> --name <new-run-name> --set display_name='A new run' description='my run description' tags.Type=Test
Optional Parameters#
--file -f
Local path to the YAML file containing the prompt flow run specification; can be overwritten by other parameters. Reference here for YAML schema.
--flow
Local path to the flow directory. If –file is provided, this path should be relative path to the file.
--data
Local path to the data file. If –file is provided, this path should be relative path to the file.
--column-mapping
Inputs column mapping, use ${data.xx}
to refer to data columns, use ${run.inputs.xx}
to refer to referenced run’s data columns, and ${run.outputs.xx}
to refer to run outputs columns.
--run
Referenced flow run name. For example, you can run an evaluation flow against an existing run. For example, “pf run create –flow evaluation_flow_dir –run existing_bulk_run”.
--variant
Node & variant name in format of ${node_name.variant_name}
.
--stream -s
Indicates whether to stream the run’s logs to the console.
default value: False
--environment-variables
Environment variables to set by specifying a property path and value. Example:
--environment-variable key1='${my_connection.api_key}' key2='value2'
. The value reference
to connection keys will be resolved to the actual value, and all environment variables
specified will be set into os.environ.
--connections
Overwrite node level connections with provided value.
Example: --connections node1.connection=test_llm_connection node1.deployment_name=gpt-35-turbo
--set
Update an object by specifying a property path and value to set.
Example: --set property1.property2=<value>
.
--source
Local path to the existing run record folder.
pf run update#
Update a run metadata, including display name, description and tags.
pf run update --name
[--set]
Example#
Update a run
pf run update -n <name> --set display_name="<display-name>" description="<description>" tags.key="value"
Required Parameter#
--name -n
Name of the run.
Optional Parameter#
--set
Update an object by specifying a property path and value to set. Example: –set property1.property2=.
pf run stream#
Stream run logs to the console.
pf run stream --name
Required Parameter#
--name -n
Name of the run.
pf run list#
List runs.
pf run list [--all-results]
[--archived-only]
[--include-archived]
[--max-results]
Optional Parameters#
--all-results
Returns all results.
default value: False
--archived-only
List archived runs only.
default value: False
--include-archived
List archived runs and active runs.
default value: False
--max-results -r
Max number of results to return. Default is 50.
default value: 50
pf run show#
Show details for a run.
pf run show --name
Required Parameter#
--name -n
Name of the run.
pf run show-details#
Preview a run’s input(s) and output(s).
pf run show-details --name
Required Parameter#
--name -n
Name of the run.
pf run show-metrics#
Print run metrics to the console.
pf run show-metrics --name
Required Parameter#
--name -n
Name of the run.
pf run visualize#
Visualize a run in the browser.
pf run visualize --names
Required Parameter#
--names -n
Name of the runs, comma separated.
pf run archive#
Archive a run.
pf run archive --name
Required Parameter#
--name -n
Name of the run.
pf run restore#
Restore an archived run.
pf run restore --name
Required Parameter#
--name -n
Name of the run.
pf tool#
Manage promptflow tools.
Command |
Description |
---|---|
Initialize a tool directory. |
|
List all tools in the environment. |
|
Validate tools. |
pf tool init#
Initialize a tool directory.
pf tool init [--package]
[--tool]
[--set]
Examples#
Creating a package tool from scratch.
pf tool init --package <package-name> --tool <tool-name>
Creating a package tool with extra info.
pf tool init --package <package-name> --tool <tool-name> --set icon=<icon-path> category=<tool-category> tags="{'<key>': '<value>'}"
Creating a package tool from scratch.
pf tool init --package <package-name> --tool <tool-name>
Creating a python tool from scratch.
pf tool init --tool <tool-name>
Optional Parameters#
--package
The package name to create.
--tool
The tool name to create.
--set
Set extra information about the tool, like category, icon and tags. Example: –set
pf tool list#
List all tools in the environment.
pf tool list [--flow]
Examples#
List all package tool in the environment.
pf tool list
List all package tool and code tool in the flow.
pf tool list --flow <path-to-flow-direcotry>
Optional Parameters#
--flow
The flow directory.
pf tool validate#
Validate tool.
pf tool validate --source
Examples#
Validate single function tool.
pf tool validate -–source <package-name>.<module-name>.<tool-function>
Validate all tool in a package tool.
pf tool validate -–source <package-name>
Validate tools in a python script.
pf tool validate --source <path-to-tool-script>
Required Parameter#
--source
The tool source to be used.
pf config#
Manage config for current user.
Command |
Description |
---|---|
Set prompt flow configs for current user. |
|
Show prompt flow configs for current user. |
pf config set#
Set prompt flow configs for current user, configs will be stored at ~/.promptflow/pf.yaml.
pf config set
Examples#
Connection provider
Set connection provider to Azure ML workspace or Azure AI project for current user.
pf config set connection.provider="azureml://subscriptions/<subscription-id>/resourceGroups/<resource-group-name>/providers/Microsoft.MachineLearningServices/workspaces/<workspace-or-project-name>"
Tracing
Set trace destination to Azure ML workspace or Azure AI project.
pf config set trace.destination="azureml://subscriptions/<subscription-id>/resourceGroups/<resource-group-name>/providers/Microsoft.MachineLearningServices/workspaces/<workspace-or-project-name>"
Only log traces to local.
pf config set trace.destination="local"
Disable tracing feature.
pf config set trace.destination="none"
pf config show#
Show prompt flow configs for current user.
pf config show
Examples#
Show prompt flow for current user.
pf config show
pf service#
Manage prompt flow service.
Command |
Description |
---|---|
Start prompt flow service. |
|
Stop prompt flow service. |
|
Display the started prompt flow service info. |
pf service start#
Start the prompt flow service.
pf service start [--port]
[--force]
[--debug]
Examples#
Prompt flow will try to start the service on the default port 23333. If the port is already taken, prompt flow will sequentially probe new ports, incrementing by one each time. Prompt flow retains the port number for future reference and will utilize it for subsequent service startups.
pf service start
Forcefully start the prompt flow service. If the port is already in use, the existing service will be terminated and restart a new service
pf service start --force
Start the prompt flow service with a specified port. If the port is already taken, prompt flow will raise an error
unless forcefully start the service with the --force
flag. Upon availability, prompt flow retains the port number for
future reference and will utilize it for subsequent service startups.
pf service start --port 65553
Start prompt flow service in foreground, displaying debug level logs directly in the terminal.
pf service start --debug
Optional Parameters#
--port -p
The designated port of the prompt flow service and port number will be remembered if port is available.
--force
Force restart the existing service if the port is used.
--debug
Start prompt flow service in foreground, displaying debug level logs directly in the terminal.
pf service stop#
Stop prompt flow service.
pf service stop [--debug]
Example#
Stop prompt flow service.
pf service stop
Optional Parameter#
--debug
The flag to turn on debug mode for cli.
pf service status#
Display the started prompt flow service info.
pf service status
pf upgrade#
Upgrade prompt flow CLI.
Command |
Description |
---|---|
Upgrade prompt flow CLI. |
Examples#
Upgrade prompt flow without prompt and run non-interactively.
pf upgrade --yes
pf trace#
Manage prompt flow traces.
Command |
Description |
---|---|
Delete traces |
pf trace delete#
Delete traces.
pf trace delete [--run]
[--collection]
[--started-before] # should combine with `collection`
Examples#
Delete traces comes from a specific run.
pf trace delete --run <run-name>
Delete traces in a specific collection.
pf trace delete --collection <collection>
Delete traces in a specific collection started before a specific time.
# `started-before` should be in ISO 8601 format
pf trace delete --collection <collection> --started-before '2024-03-19T15:17:23.807563'
Autocomplete#
To activate autocomplete features for the pf CLI you need to add the following snippet to your ~/.bashrc or ~/.zshrc:
source <promptflow_package_install_root>/pf.completion.sh