Engine#
Engine#
- class olive.engine.Engine(workflow_id: str = 'default_workflow', search_strategy: Dict[str, Any] | SearchStrategyConfig | None = None, host: Dict[str, Any] | SystemConfig | None = None, target: Dict[str, Any] | SystemConfig | None = None, evaluator: Dict[str, Any] | OliveEvaluatorConfig | None = None, cache_config: Dict[str, Any] | CacheConfig | None = None, plot_pareto_frontier: bool = False, no_artifacts: bool = False, *, azureml_client_config=None)[source]#
The engine executes the registered Olive Steps.
It facilitate evaluation of the output models using provided evaluation criteria and produces output model(s).
- register(pass_type: Type[Pass], config: Dict[str, Any] = None, name: str = None, host: OliveSystem = None, evaluator_config: OliveEvaluatorConfig = None)[source]#
Register a pass configuration so that it could be instantiated and executed later.
- run(input_model_config: ModelConfig, accelerator_specs: List[AcceleratorSpec], packaging_config: PackagingConfig | List[PackagingConfig] | None = None, output_dir: str = None, evaluate_input_model: bool = True, log_to_file: bool = False, log_severity_level: int = 1)[source]#
Run all the registered Olive passes on the input model and produce one or more candidate models.
- Parameters:
input_model_config – input Olive model configuration
accelerator_specs – list of accelerator specs
packaging_config – packaging configuration, if packaging_config is provided, the output model will be packaged into a zip file.
output_dir – output directory for the output model
evaluate_input_model – if evaluate_input_model is True, run the evaluation on the input model.
log_to_file – if save logs to a file.
log_severity_level – severity level of the logger.
- Returns:
- One accelerator spec:
output_dir/footprints.json: footprint of the run output_dir/pareto_frontier_footprints.json: pareto frontier footprints output_dir/run_history.txt: run history output_dir/input_model_metrics.json: evaluation results of the input model output_dir/…: output model files
- Multiple accelerator specs:
output_dir/{acclerator_spec}/…: Same as 1 but for each accelerator spec output_dir/…: output model files
- No search mode:
- One accelerator spec
output_dir/footprints.json: footprint of the run output_dir/run_history.txt: run history output_dir/input_model_metrics.json: evaluation results of the input model output_dir/output_footprints.json: footprint of the output models output_dir/…: output model files
- One pass flow:
output_dir/metrics.json: evaluation results of the output model output_dir/…: output model files
- Multiple accelerator specs
output_dir/{acclerator_spec}/…: Same as 1 but for each accelerator spec output_dir/…: output model files
- Return type:
Search mode
Note
All parameters that of type ...Config
or ConfigBase
class can be assigned dictionaries with keys corresponding
to the fields of the class.
EngineConfig#
- pydantic settings olive.engine.EngineConfig[source]#
- field search_strategy: SearchStrategyConfig | bool = None#
- field host: SystemConfig = None#
- field target: SystemConfig = None#
- field evaluator: OliveEvaluatorConfig = None#
- field plot_pareto_frontier: bool = False#
- field no_artifacts: bool = False#
SearchStrategyConfig
- pydantic settings olive.strategy.search_strategy.SearchStrategyConfig[source]#
- field execution_order: str [Required]#
- field search_algorithm: str [Required]#
- field search_algorithm_config: ConfigBase = None#
- field output_model_num: int = None#
- field stop_when_goals_met: bool = False#
- field max_iter: int = None#
- field max_time: int = None#
SystemConfig
- pydantic settings olive.systems.system_config.SystemConfig[source]
- field type: SystemType [Required]
- field config: TargetUserConfig = None
- create_system()[source]
- property olive_managed_env
OliveEvaluatorConfig
- pydantic settings olive.evaluator.olive_evaluator.OliveEvaluatorConfig[source]#
- field type: str = None#
- field type_args: Dict [Optional]#
- field user_script: Path | str = None#
- field script_dir: Path | str = None#
- property is_accuracy_drop_tolerance#
- create_evaluator(model: OliveModelHandler = None) OliveEvaluator [source]#
SearchStrategy#
- class olive.strategy.search_strategy.SearchStrategy(config: Dict[str, Any] | SearchStrategyConfig)[source]#