Transformer++ Search Space#

This is an experimental feature and could change at any time

This notebook shows how to use Archai’s Tranformer++ search space for Language Modelling.

This search space consists in 8 different token-mixing primitives that can be used to create a wide variety of architectures. The Transformer++ model functions like a regular decoder-only Transformer architecture, comprising of an embedding layer, followed by a sequence L decoder layers and a final language model head.

The Transformer++ search space supports using one or more primitives on decoder layers by sharding the embedding dimension across multiple primitives:

Search Space Diagram

List of Available Primitives#

Primitive

Extra params

Custom CUDA Kernel

Reference

Multihead Self-Attention

🗸

Link

SGConv

kernel_size

🗸

Link

SGConv3

kernel_size

🗸

Local Attention

window_size

Link

LSH Attention

bucket_size, num_buckets, num_hashes

Link

Separable Conv1D

kernel_size

Examples#

[8]:
from archai.discrete_search.search_spaces.nlp import TfppSearchSpace
[9]:
from transformers import GPT2Tokenizer
[10]:
ss = TfppSearchSpace(
    backbone='codegen', embed_dims=[768, 768*2], inner_dims=[768*4, 1024*4], total_heads=[12],
    total_layers=range(6), op_subset=['mha', 'sgconv', 'local_attn'],
    local_attn_window_sizes=[256, 512], sgconv_kernel_sizes=[128, 256],
    mixed_ops=False, # Only one primitive per layer
    homogeneous=False,
    seed=42,

    # Huggingface kwargs
    n_positions=8192, # Maximum Seq len
    vocab_size=50257
)
[11]:
m = ss.random_sample()
m.arch
[11]:
LanguageModel(
  (model): CodeGenForCausalLM(
    (transformer): CodeGenModel(
      (wte): Embedding(50257, 1536)
      (embed_dropout): Dropout(p=0.0, inplace=False)
      (h): ModuleList()
      (ln_f): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)
    )
    (lm_head): Linear(in_features=1536, out_features=50257, bias=True)
  )
)

Model forward pass

[12]:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('gpt2')
tokenizer.add_special_tokens({'pad_token': '<|endoftext|>'})

x = tokenizer(['Just testing', 'something'], return_tensors='pt', padding=True, truncation=True)
m.arch(**x)
[12]:
0

Some primitives have custom CUDA kernels that can be used depending on the hardware available. For more information on installation instructions, see flash_attention and H3 repos by HazyResearch.

To install archai with flash-attention kernel dependencies, use

python3 -m pip install archai[flash-attn]

Available CUDA Kernels

  • FusedDense (for linear projections)

  • FusedMLP

  • FlashAttention (used in MHA)

  • FlashRotaryEmb (used in MHA)

  • FastFFTConv (used in SGconv and SGconv3)

[32]:
ss = TfppSearchSpace(
    backbone='codegen', embed_dims=[768, 768*2], inner_dims=[768*4, 1024*4], total_heads=[12],
    total_layers=range(1, 6), op_subset=['mha', 'sgconv', 'local_attn'],
    local_attn_window_sizes=[256, 512], sgconv_kernel_sizes=[128, 256],
    mixed_ops=False, # Only one primitive per layer
    homogeneous=False,
    seed=42,

    # Extra kwargs
    n_positions=8192, # Maximum Seq len
    vocab_size=50257,

    # CUDA kernel flags
    fused_mlp=True,
    fused_dense=True,
    fast_fftconv=True,
    flash_attn=True,
    flash_rotary_emb=True
)
[ ]:
#NBVAL_SKIP
m = ss.random_sample()