Retrieval
GenAIScript provides various utilities to retrieve content and augment the prompt. This technique is typically referred to as RAG (Retrieval-Augmentation-Generation) in the literature.
Vector Search
GenAIScript provides various vector database to support embeddings (vector) search.
// index creationconst index = await retrieval.index("animals")// indexingawait index.insertOrUpdate(env.files)// searchconst res = await index.search("cat dog")def("RAG", res)
- Read more about vector search and how to use it.
Fuzzy Search
The retrieve.fuzzSearch
performs a “traditional” fuzzy search to find the most similar documents to the prompt.
const files = await retrieval.fuzzSearch("cat dog", env.files)
Web Search
The retrieval.webSearch
performs a web search using a search engine API. You will need to provide API keys for the search engine you want to use.
const { webPages } = await retrieval.webSearch("cat dog")def("RAG", webPages)
Bing
To enable Bing search, configure the BING_SEARCH_API_KEY
secret in your .env
file. Learn more about configuring the Bing Search API.