Source code for archai.datasets.cv.cifar_dataset_provider
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from typing import Callable, Optional
from overrides import overrides
from torch.utils.data import Dataset
from torchvision.datasets import CIFAR10, CIFAR100
from torchvision.transforms import ToTensor
from archai.api.dataset_provider import DatasetProvider
from archai.common.ordered_dict_logger import OrderedDictLogger
logger = OrderedDictLogger(source=__name__)
[docs]class CifarDatasetProvider(DatasetProvider):
"""CIFAR-based dataset provider."""
SUPPORTED_DATASETS = {
"cifar10": CIFAR10,
"cifar100": CIFAR100,
}
def __init__(
self,
dataset: Optional[str] = "cifar10",
root: Optional[str] = "dataroot",
) -> None:
"""Initialize CIFAR-based dataset provider.
Args:
dataset: Name of dataset.
root: Root directory of dataset where is saved.
"""
super().__init__()
assert dataset in self.SUPPORTED_DATASETS, f"`dataset` should be one of: {list(self.SUPPORTED_DATASETS)}"
self.dataset = dataset
self.root = root
[docs] @overrides
def get_train_dataset(
self,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
) -> Dataset:
return self.SUPPORTED_DATASETS[self.dataset](
self.root,
train=True,
download=True,
transform=transform or ToTensor(),
target_transform=target_transform,
)
[docs] @overrides
def get_val_dataset(
self,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
) -> Dataset:
return self.SUPPORTED_DATASETS[self.dataset](
self.root,
train=False,
download=True,
transform=transform or ToTensor(),
target_transform=target_transform,
)
[docs] @overrides
def get_test_dataset(
self,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
) -> Dataset:
logger.warn(f"Testing set not available for `{self.dataset}`. Returning validation set ...")
return self.get_val_dataset(transform=transform, target_transform=target_transform)