Flag unusual outlook time settings for work day start and end time
Source:R/flag_outlooktime.R
flag_outlooktime.Rd
This function flags unusual outlook calendar settings for start and end time of work day.
Usage
flag_outlooktime(data, threshold = c(4, 15), return = "message")
Arguments
- data
A data frame containing a Person Query.
- threshold
A numeric vector of length two, specifying the hour threshold for flagging. Defaults to c(4, 15).
- return
String specifying what to return. This must be one of the following strings:
"text"
(default)"message"
"data"
Value
A different output is returned depending on the value passed to the return
argument:
"text"
: string. A diagnostic message."message"
: message on console. A diagnostic message."data"
: data frame. Data where flag is present.
See Value
for more information.
See also
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
hr_trend()
,
hrvar_count_all()
,
hrvar_count()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_shifts()
,
identify_tenure()
,
track_HR_change()
,
validation_report()
Examples
# Demo with `pq_data` example where Outlook Start and End times are imputed
spq_df <- pq_data
spq_df$WorkingStartTimeSetInOutlook <- "6:30"
spq_df$WorkingEndTimeSetInOutlook <- "23:30"
# Return a message
flag_outlooktime(spq_df, threshold = c(5, 13))
#> [Warning] 100% (1000) of the person-date rows in the data have extreme Outlook settings.
#> 0% (0) have an Outlook workday shorter than 5 hours, while 100% (1000) have a workday longer than 13 hours.
# Return data
flag_outlooktime(spq_df, threshold = c(5, 13), return = "data")
#> # A tibble: 1,000 × 5
#> PersonId WorkdayRange WorkdayFlag WorkdayFlag1 WorkdayFlag2
#> <chr> <dbl> <lgl> <lgl> <lgl>
#> 1 a6afe34c-8524-32d3-a368-1… 17 TRUE FALSE TRUE
#> 2 d6368140-9312-380b-bbc9-9… 17 TRUE FALSE TRUE
#> 3 60bf99b0-65fd-3c3f-94fb-8… 17 TRUE FALSE TRUE
#> 4 93fddd74-3667-392b-ba5a-9… 17 TRUE FALSE TRUE
#> 5 53183116-2cb2-32ee-9042-d… 17 TRUE FALSE TRUE
#> 6 0a83c097-8796-3b8b-b15f-e… 17 TRUE FALSE TRUE
#> 7 17ac6cbf-1b86-3c01-a7c1-3… 17 TRUE FALSE TRUE
#> 8 48cfb0e6-05da-31c9-b0a0-c… 17 TRUE FALSE TRUE
#> 9 1f907ab1-f3de-3472-acef-a… 17 TRUE FALSE TRUE
#> 10 5538a778-326b-3efe-92f1-8… 17 TRUE FALSE TRUE
#> # ℹ 990 more rows