This function takes in a selected metric and uses
z-score (number of standard deviations) to identify outliers
across time. There are applications in this for identifying
weeks with abnormally low collaboration activity, e.g. holidays.
Time as a grouping variable can be overridden with the group_var
argument.
Value
Returns a data frame with MetricDate
(if grouping variable is not set),
the metric, and the corresponding z-score.
See also
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_privacythreshold()
,
identify_shifts()
,
identify_tenure()
,
track_HR_change()
,
validation_report()
Examples
identify_outlier(pq_data, metric = "Collaboration_hours")
#> # A tibble: 23 × 3
#> MetricDate Collaboration_hours zscore
#> <date> <dbl> <dbl>
#> 1 2024-04-28 22.8 -0.419
#> 2 2024-05-05 22.7 -0.806
#> 3 2024-05-12 23.9 2.22
#> 4 2024-05-19 23.2 0.422
#> 5 2024-05-26 23.5 1.14
#> 6 2024-06-02 23.1 0.169
#> 7 2024-06-09 23.0 -0.0570
#> 8 2024-06-16 23.5 1.18
#> 9 2024-06-23 23.0 -0.0483
#> 10 2024-06-30 23.3 0.791
#> # ℹ 13 more rows