This function takes in a selected metric and uses
z-score (number of standard deviations) to identify outliers
across time. There are applications in this for identifying
weeks with abnormally low collaboration activity, e.g. holidays.
Time as a grouping variable can be overridden with the group_var
argument.
Value
Returns a data frame with MetricDate (if grouping variable is not set),
the metric, and the corresponding z-score.
See also
Other Data Validation:
check_query(),
extract_hr(),
flag_ch_ratio(),
flag_em_ratio(),
flag_extreme(),
flag_outlooktime(),
hr_trend(),
hrvar_count(),
hrvar_count_all(),
hrvar_trend(),
identify_churn(),
identify_holidayweeks(),
identify_inactiveweeks(),
identify_nkw(),
identify_privacythreshold(),
identify_shifts(),
identify_tenure(),
track_HR_change(),
validation_report()
Examples
identify_outlier(pq_data, metric = "Collaboration_hours")
#> # A tibble: 23 × 3
#>    MetricDate Collaboration_hours  zscore
#>    <date>                   <dbl>   <dbl>
#>  1 2024-04-28                22.8 -0.419 
#>  2 2024-05-05                22.7 -0.806 
#>  3 2024-05-12                23.9  2.22  
#>  4 2024-05-19                23.2  0.422 
#>  5 2024-05-26                23.5  1.14  
#>  6 2024-06-02                23.1  0.169 
#>  7 2024-06-09                23.0 -0.0570
#>  8 2024-06-16                23.5  1.18  
#>  9 2024-06-23                23.0 -0.0483
#> 10 2024-06-30                23.3  0.791 
#> # ℹ 13 more rows
