Track count of distinct people over time in a specified HR variable
Source:R/hrvar_trend.R
hrvar_trend.Rd
This function provides a week by week view of the count of the distinct people by the specified HR attribute.The default behaviour is to return a week by week heatmap bar plot.
Arguments
- data
A Standard Person Query dataset in the form of a data frame.
- hrvar
HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation". If a vector with more than one value is provided, the HR attributes are automatically concatenated.
- return
String specifying what to return. This must be one of the following strings:
"plot"
"table"
See
Value
for more information.
Value
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object containing a bar plot."table"
: data frame containing a count table.
See also
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_shifts()
,
identify_tenure()
,
track_HR_change()
,
validation_report()
Examples
# Return a bar plot
hrvar_trend(pq_data, hrvar = "LevelDesignation")
# Return a summary table
hrvar_trend(pq_data, hrvar = "LevelDesignation", return = "table")
#> # A tibble: 5 × 11
#> group `2022-05-01` `2022-05-08` `2022-05-15` `2022-05-22` `2022-05-29`
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Director 6 6 6 6 6
#> 2 Junior IC 10 10 10 10 10
#> 3 Manager 11 11 11 11 11
#> 4 Senior IC 20 20 20 20 20
#> 5 Support 53 53 53 53 53
#> # ℹ 5 more variables: `2022-06-05` <dbl>, `2022-06-12` <dbl>,
#> # `2022-06-19` <dbl>, `2022-06-26` <dbl>, `2022-07-03` <dbl>