Analyzes a selected metric and returns a box plot by default. Additional options available to return a table with distribution elements.
Arguments
- data
A Standard Person Query dataset in the form of a data frame.
- metric
Character string containing the name of the metric, e.g. "Collaboration_hours"
- hrvar
String containing the name of the HR Variable by which to split metrics. Defaults to
"Organization"
. To run the analysis on the total instead of splitting by an HR attribute, supplyNULL
(without quotes).- mingroup
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- return
String specifying what to return. This must be one of the following strings:
"plot"
"table"
"data"
See
Value
for more information.
Value
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A box plot for the metric."table"
: data frame. A summary table for the metric, containing the following columns:group
: The HR variable by which the metric is split.mean
: The mean of the metric.min
: The minimum value of the metric.p10
: The 10th percentile of the metric.p25
: The 25th percentile of the metric.p50
: The 50th percentile of the metric.p75
: The 75th percentile of the metric.p90
: The 90th percentile of the metric.max
: The maximum value of the metric.sd
: The standard deviation of the metric.range
: The range of the metric.n
: The number of observations.
"data"
: data frame. A data frame containing the metric and group.
Details
This is a general purpose function that powers all the functions in the package that produce box plots.
See also
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_bubble()
,
create_density()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
Examples
# Create a box plot for Collaboration_hours by Level Designation
create_boxplot(pq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation", return = "plot")
# Create a box plot for Collaboration_hours by Organization
create_boxplot(pq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "plot")
# Create a summary statistics table for Collaboration_hoursby Organization
create_boxplot(pq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "table")
#> # A tibble: 7 × 12
#> group mean min p10 p25 p50 p75 p90 max sd range n
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 Finance 23.1 20.3 21.3 22.3 23.1 23.9 25.0 25.4 1.24 5.10 68
#> 2 HR 23.1 21.0 22.0 22.4 22.9 24.0 24.4 24.8 1.01 3.78 33
#> 3 IT 22.8 20.3 21.0 21.7 22.8 23.8 24.5 26.9 1.43 6.65 68
#> 4 Legal 22.5 19.7 21.0 21.5 22.6 23.5 24.2 24.8 1.23 5.06 44
#> 5 Operations 23.5 20.0 21.7 22.6 23.3 24.9 25.5 26.4 1.62 6.39 22
#> 6 Research 23.3 20.1 21.8 22.5 23.3 24.2 25.0 25.5 1.30 5.39 52
#> 7 Sales 23.1 21.2 21.6 22.2 23.2 23.9 24.5 24.7 1.13 3.48 13