Provides a week by week view of a selected metric, visualised as line charts. By default returns a line chart for the defined metric, with a separate panel per value in the HR attribute. Additional options available to return a summary table.
Usage
create_line(
data,
metric,
hrvar = "Organization",
mingroup = 5,
ncol = NULL,
return = "plot"
)
Arguments
- data
A Standard Person Query dataset in the form of a data frame.
- metric
Character string containing the name of the metric, e.g. "Collaboration_hours"
- hrvar
String containing the name of the HR Variable by which to split metrics. Defaults to
"Organization"
. To run the analysis on the total instead of splitting by an HR attribute, supplyNULL
(without quotes).- mingroup
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- ncol
Numeric value setting the number of columns on the plot. Defaults to
NULL
(automatic).- return
String specifying what to return. This must be one of the following strings:
"plot"
"table"
See
Value
for more information.
Value
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A faceted line plot for the metric."table"
: data frame. A summary table for the metric.
Details
This is a general purpose function that powers all the functions in the package that produce faceted line plots.
See also
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_density()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
Other Time-series:
create_line_asis()
,
create_period_scatter()
,
create_trend()
Examples
# Return plot of Email Hours
pq_data %>% create_line(metric = "Email_hours", return = "plot")
# Return plot of Collaboration Hours
pq_data %>% create_line(metric = "Collaboration_hours", return = "plot")
# Return plot but coerce plot to two columns
pq_data %>%
create_line(
metric = "Collaboration_hours",
hrvar = "Organization",
ncol = 2
)
# Return plot of email hours and cut by `LevelDesignation`
pq_data %>% create_line(metric = "Email_hours", hrvar = "LevelDesignation")