Skip to contents

This function scans a standard query output for groups with high levels of 'Manager 1:1 Time'. Returns a plot by default, with an option to return a table with a all of groups (across multiple HR attributes) ranked by manager 1:1 time.

Usage

one2one_rank(
  data,
  hrvar = extract_hr(data),
  mingroup = 5,
  mode = "simple",
  plot_mode = 1,
  return = "plot"
)

Arguments

data

A Standard Person Query dataset in the form of a data frame.

hrvar

String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup

Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

mode

String to specify calculation mode. Must be either:

  • "simple"

  • "combine"

plot_mode

Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when return = "plot".

  • 1: Top and bottom five groups across the data population are highlighted

  • 2: Top and bottom groups per organizational attribute are highlighted

return

String specifying what to return. This must be one of the following strings:

  • "plot" (default)

  • "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

  • "plot": 'ggplot' object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output if mode is set to "combine".

  • "table": data frame. A summary table for the metric.

Details

Uses the metric Meeting_and_call_hours_with_manager_1_1. See create_rank() for applying the same analysis to a different metric.

Examples

# Return rank table
one2one_rank(data = pq_data, return = "table")
#> # A tibble: 22 × 4
#>    hrvar               group      Meeting_and_call_hours_with_manager_1_1     n
#>    <chr>               <chr>                                        <dbl> <int>
#>  1 FunctionType        Technician                                   0.968   274
#>  2 SupervisorIndicator IC                                           0.929    34
#>  3 Organization        Sales                                        0.924    13
#>  4 Organization        Research                                     0.907    52
#>  5 Organization        Finance                                      0.895    68
#>  6 FunctionType        Specialist                                   0.894   300
#>  7 Level               Level4                                       0.892   136
#>  8 LevelDesignation    Junior IC                                    0.892   136
#>  9 Level               Level1                                       0.885    37
#> 10 LevelDesignation    Executive                                    0.885    37
#> # ℹ 12 more rows

# Return plot
one2one_rank(data = pq_data, return = "plot")