Distribution of Collaboration Hours as a 100% stacked bar
Source:R/collaboration_dist.R
collaboration_dist.Rd
Analyze the distribution of Collaboration Hours. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.
Arguments
- data
A Standard Person Query dataset in the form of a data frame.
- hrvar
String containing the name of the HR Variable by which to split metrics. Defaults to
"Organization"
. To run the analysis on the total instead of splitting by an HR attribute, supplyNULL
(without quotes).- mingroup
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- return
String specifying what to return. This must be one of the following strings:
"plot"
"table"
See
Value
for more information.- cut
A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)
Value
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A stacked bar plot for the metric."table"
: data frame. A summary table for the metric.
Metrics used
The metric Collaboration_hours
is used in the calculations. Please ensure
that your query contains a metric with the exact same name.
See also
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
Other Collaboration:
collaboration_area()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
Examples
# Return plot
collaboration_dist(pq_data, hrvar = "Organization")
# Return summary table
collaboration_dist(pq_data, hrvar = "Organization", return = "table")
#> # A tibble: 4 × 6
#> group `< 15 hours` `15 - 20 hours` `20 - 25 hours` `25+ hours` Employee_Count
#> <fct> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 Finan… 0.704 0.148 NA 0.148 27
#> 2 HR 0.762 0.143 0.0476 0.0476 21
#> 3 Produ… 0.952 NA NA 0.0476 21
#> 4 Sales… 0.677 0.0323 NA 0.290 31