This function scans a standard query output for groups with high levels of Weekly Meeting Collaboration. Returns a plot by default, with an option to return a table with a all of groups (across multiple HR attributes) ranked by hours of digital collaboration.
Usage
meeting_rank(
  data,
  hrvar = extract_hr(data),
  mingroup = 5,
  mode = "simple",
  plot_mode = 1,
  return = "plot"
)Arguments
- data
 A Standard Person Query dataset in the form of a data frame.
- hrvar
 String containing the name of the HR Variable by which to split metrics. Defaults to
"Organization". To run the analysis on the total instead of splitting by an HR attribute, supplyNULL(without quotes).- mingroup
 Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- mode
 String to specify calculation mode. Must be either:
"simple""combine"
- plot_mode
 Numeric vector to determine which plot mode to return. Must be either
1or2, and is only used whenreturn = "plot".1: Top and bottom five groups across the data population are highlighted2: Top and bottom groups per organizational attribute are highlighted
- return
 String specifying what to return. This must be one of the following strings:
"plot"(default)"table"
See
Valuefor more information.
Value
A different output is returned depending on the value passed to the return
argument:
"plot": 'ggplot' object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output ifmodeis set to"combine"."table": data frame. A summary table for the metric.
Details
Uses the metric Meeting_hours.
See create_rank() for applying the same analysis to a different metric.
See also
Other Visualization:
afterhours_dist(),
afterhours_fizz(),
afterhours_line(),
afterhours_rank(),
afterhours_summary(),
afterhours_trend(),
collaboration_area(),
collaboration_dist(),
collaboration_fizz(),
collaboration_line(),
collaboration_rank(),
collaboration_sum(),
collaboration_trend(),
create_bar(),
create_bar_asis(),
create_boxplot(),
create_bubble(),
create_dist(),
create_fizz(),
create_inc(),
create_line(),
create_line_asis(),
create_period_scatter(),
create_rank(),
create_rogers(),
create_sankey(),
create_scatter(),
create_stacked(),
create_tracking(),
create_trend(),
email_dist(),
email_fizz(),
email_line(),
email_rank(),
email_summary(),
email_trend(),
external_dist(),
external_fizz(),
external_line(),
external_rank(),
external_sum(),
hr_trend(),
hrvar_count(),
hrvar_trend(),
keymetrics_scan(),
meeting_dist(),
meeting_fizz(),
meeting_line(),
meeting_summary(),
meeting_trend(),
one2one_dist(),
one2one_fizz(),
one2one_freq(),
one2one_line(),
one2one_rank(),
one2one_sum(),
one2one_trend()
Other Meetings:
meeting_dist(),
meeting_fizz(),
meeting_line(),
meeting_summary(),
meeting_tm_report(),
meeting_trend()
Examples
# Return rank table
meeting_rank(data = pq_data, return = "table")
#> # A tibble: 22 × 4
#>    hrvar               group          Meeting_hours     n
#>    <chr>               <chr>                  <dbl> <int>
#>  1 Organization        Research                20.2    52
#>  2 Organization        Operations              19.8    22
#>  3 Level               Level3                  19.4    87
#>  4 LevelDesignation    Senior IC               19.4    87
#>  5 FunctionType        Consultant              19.3   288
#>  6 SupervisorIndicator IC                      19.3    34
#>  7 Level               Level2                  19.2    40
#>  8 LevelDesignation    Senior Manager          19.2    40
#>  9 FunctionType        Specialist              19.1   300
#> 10 Organization        Sales                   18.9    13
#> # ℹ 12 more rows
# Return plot
meeting_rank(data = pq_data, return = "plot")
