Provides an analysis of the distribution of a selected metric. Returns a faceted density plot by default. Additional options available to return the underlying frequency table.
Usage
create_density(
data,
metric,
hrvar = "Organization",
mingroup = 5,
ncol = NULL,
return = "plot"
)
Arguments
- data
A Standard Person Query dataset in the form of a data frame.
- metric
String containing the name of the metric, e.g. "Collaboration_hours"
- hrvar
String containing the name of the HR Variable by which to split metrics. Defaults to
"Organization"
. To run the analysis on the total instead of splitting by an HR attribute, supplyNULL
(without quotes).- mingroup
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- ncol
Numeric value setting the number of columns on the plot. Defaults to
NULL
(automatic).- return
String specifying what to return. This must be one of the following strings:
"plot"
"table"
"data"
"frequency"
See
Value
for more information.
Value
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A faceted density plot for the metric."table"
: data frame. A summary table for the metric."data"
: data frame. Data with calculated person averages."frequency
: list of data frames. Each data frame contains the frequencies used in each panel of the plotted histogram.
See also
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
Examples
# Return plot for whole organization
create_density(pq_data, metric = "Collaboration_hours", hrvar = NULL)
# Return plot
create_density(pq_data, metric = "Collaboration_hours", hrvar = "Organization")
# Return plot but coerce plot to three columns
create_density(pq_data, metric = "Collaboration_hours", hrvar = "Organization", ncol = 3)
# Return summary table
create_density(pq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "table")
#> # A tibble: 4 × 6
#> group mean median max min Employee_Count
#> <chr> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 Finance 16.7 13.4 54.5 8.83 27
#> 2 HR 17.8 12.3 119. 8.99 21
#> 3 Product 11.7 10.8 32.5 8.13 21
#> 4 Sales and Marketing 25.8 13.3 119. 7.08 31