This page was generated from docs/examples/driver_examples/Qcodes example with Lakeshore 336 or 372 - Bluefors T control.ipynb. Interactive online version: .
QCoDeS Example with the Lakeshore Model 372 to Control the Temperature of the Bluefors Fridge¶
The Lakeshore Temperature Controller Model 372 is used to control the temperature of the Bluefors fridges.
To use it as such outside of the control software provided by Bluefors, one has to establish an addtional connection. Within the Bluefors system, the Lakeshore is connected via its usb port (through a USB hub along with the other devices) to the control Laptop (as part of the Bluefors setup). To control the temperature of the fridge via QCoDeS, it is the most convenient to connect the Lakeshore via its LAN port to the control computer (the one with QCoDeS, not the one from Bluefors). In order to
reach the LAN port of the Lakeshore, the Bluefors rack has to be opened, and the PCB board that is fixed to the metal board has to be opened as well (it’s a door as well with magnetic clips on one side). Do NOT disconnect the USB! Then switch the operation mode (usually there is an Interface button on the instrument) from USB to LAB. When using a router, remember to set the IP address setting to DHCP. Finally, use the following address format for VISA address:
"TCPIP::<ip address>::<port>::SOCKET"
, where “port” is a known value from the manual (most probably, “7777”).
As mentioned above, for using the Lakeshore with QCoDeS, the operation mode has to be switched from USB to LAN. When done with the measurements, please, switch back to USB, so that the logging of the Temperature provided by the Bluefors software continues. It is planned to implement a server that takes care of the logging, so that the switching to USB will no longer be necessary. For the time being, please, always remember to switch back!
Driver Setup¶
[2]:
from qcodes.instrument_drivers.Lakeshore import LakeshoreModel372
# put visa address here, see e.g. NI Max
# or look up the IP address on
# the instrument itself
ls = LakeshoreModel372("lakeshore_372", "TCPIP::192.168.0.160::7777::SOCKET")
[lakeshore_372(Model_372_Mock)] Error getting or interpreting *IDN?: ''
Traceback (most recent call last):
File "C:\Users\jenielse\source\repos\Qcodes\qcodes\instrument\instrument.py", line 90, in get_idn
idstr = self.ask("*IDN?")
File "C:\Users\jenielse\source\repos\Qcodes\qcodes\instrument\instrument.py", line 414, in ask
raise e
File "C:\Users\jenielse\source\repos\Qcodes\qcodes\instrument\instrument.py", line 407, in ask
answer = self.ask_raw(cmd)
File "C:\Users\jenielse\source\repos\Qcodes\qcodes\tests\drivers\test_lakeshore.py", line 65, in ask_raw
if query_str in self.queries:
File "C:\Users\jenielse\source\repos\Qcodes\qcodes\utils\attribute_helpers.py", line 74, in __getattr__
raise AttributeError(
AttributeError: ("'Model_372_Mock' object and its delegates have no attribute 'queries'", "asking '*IDN?' to <Model_372_Mock: lakeshore_372>")
Connected to: None lakeshore_372 (serial:None, firmware:None) in 0.09s
Readout Sensor Channels¶
The lakeshore has two types of channels: Readout channels and heaters. For reading the temperature we use the readout channels. There are sixteen channels, each of which has the following parameters:
[3]:
ls.ch01.parameters
[3]:
{'temperature': <qcodes.parameters.parameter.Parameter: temperature at 2356164461760>,
't_limit': <qcodes.parameters.parameter.Parameter: t_limit at 2356164461232>,
'sensor_raw': <qcodes.parameters.parameter.Parameter: sensor_raw at 2356164462240>,
'sensor_status': <qcodes.parameters.parameter.Parameter: sensor_status at 2356164466080>,
'sensor_name': <qcodes.parameters.parameter.Parameter: sensor_name at 2356164462144>,
'enabled': <qcodes.parameters.group_parameter.GroupParameter: enabled at 2356164463536>,
'dwell': <qcodes.parameters.group_parameter.GroupParameter: dwell at 2356164463200>,
'pause': <qcodes.parameters.group_parameter.GroupParameter: pause at 2356164464640>,
'curve_number': <qcodes.parameters.group_parameter.GroupParameter: curve_number at 2356164465552>,
'temperature_coefficient': <qcodes.parameters.group_parameter.GroupParameter: temperature_coefficient at 2356164465264>,
'excitation_mode': <qcodes.parameters.group_parameter.GroupParameter: excitation_mode at 2356164465456>,
'excitation_range_number': <qcodes.parameters.group_parameter.GroupParameter: excitation_range_number at 2356164465984>,
'auto_range': <qcodes.parameters.group_parameter.GroupParameter: auto_range at 2356164467136>,
'range': <qcodes.parameters.group_parameter.GroupParameter: range at 2356164460992>,
'current_source_shunted': <qcodes.parameters.group_parameter.GroupParameter: current_source_shunted at 2356164467424>,
'units': <qcodes.parameters.group_parameter.GroupParameter: units at 2356164467472>}
All the parameters have docstrings, labels, and units, when applicable.
Some of these parameters have been added just because other interesting parameters can only be set together with these (Lakeshore uses VISA commands with multiple inputs/outputs).
Some parameters like curve_number
should not be changed, unless the user knows what he’s doing.
In order to read temperature values from all the sensors, we can do the following:
[4]:
for ch in ls.channels:
print(
f'Temperature of {ch.short_name} ({"on" if ch.enabled() else "off"}): {ch.temperature()} {ch.units()}'
)
Temperature of ch01 (on): 4.0 kelvin
Temperature of ch02 (on): 4.0 kelvin
Temperature of ch03 (on): 4.0 kelvin
Temperature of ch04 (on): 4.0 kelvin
Temperature of ch05 (on): 4.0 kelvin
Temperature of ch06 (on): 4.0 kelvin
Temperature of ch07 (on): 4.0 kelvin
Temperature of ch08 (on): 4.0 kelvin
Temperature of ch09 (on): 4.0 kelvin
Temperature of ch10 (on): 4.0 kelvin
Temperature of ch11 (on): 4.0 kelvin
Temperature of ch12 (on): 4.0 kelvin
Temperature of ch13 (on): 4.0 kelvin
Temperature of ch14 (on): 4.0 kelvin
Temperature of ch15 (on): 4.0 kelvin
Temperature of ch16 (on): 4.0 kelvin
The enabled
parameter of the sensor channel is very important because Lakeshore gets readings from the enabled channels in sequence. This means that if you have 3 channels enabled, while you are contantly requesting the temperature reading from only the first one, the array of readings will have parts when the value is constant. This is because within those parts Lakeshore was busy with reading temperature from the other two channels.
The units
parameter is also of big importance. As it will be explained below, it defines the units from the setpoint
value of the heater that is used in a closed_loop
mode.
Heating and feedback loop¶
To set a certain temperature one needs to start a feedback loop that reads the temperature from a sensor channel, and feeds it back to the sample through a heater. The Lakeshore 372 has three heaters: sample_heater
, warmup_heater
, and analog_heater
.
Here the sample_heater
will be used. It has the following parameters:
[5]:
h = ls.sample_heater
h.parameters
[5]:
{'mode': <qcodes.parameters.group_parameter.GroupParameter: mode at 2356165456464>,
'input_channel': <qcodes.parameters.group_parameter.GroupParameter: input_channel at 2356165456800>,
'powerup_enable': <qcodes.parameters.group_parameter.GroupParameter: powerup_enable at 2356165457664>,
'P': <qcodes.parameters.group_parameter.GroupParameter: P at 2356165458768>,
'I': <qcodes.parameters.group_parameter.GroupParameter: I at 2356165459248>,
'D': <qcodes.parameters.group_parameter.GroupParameter: D at 2356165459728>,
'output_range': <qcodes.parameters.parameter.Parameter: output_range at 2356165591296>,
'output': <qcodes.parameters.parameter.Parameter: output at 2356165591488>,
'setpoint': <qcodes.parameters.parameter.Parameter: setpoint at 2356165592400>,
'range_limits': <qcodes.parameters.parameter.Parameter: range_limits at 2356165593120>,
'wait_cycle_time': <qcodes.parameters.parameter.Parameter: wait_cycle_time at 2356165593648>,
'wait_tolerance': <qcodes.parameters.parameter.Parameter: wait_tolerance at 2356165594368>,
'wait_equilibration_time': <qcodes.parameters.parameter.Parameter: wait_equilibration_time at 2356165594992>,
'blocking_t': <qcodes.parameters.parameter.Parameter: blocking_t at 2356165595664>,
'polarity': <qcodes.parameters.group_parameter.GroupParameter: polarity at 2356165596384>,
'use_filter': <qcodes.parameters.group_parameter.GroupParameter: use_filter at 2356165596192>,
'delay': <qcodes.parameters.group_parameter.GroupParameter: delay at 2356165597344>}
The allowed modes, polarities, and ranges are defined in:
[6]:
h.MODES
[6]:
{'off': 0,
'monitor_out': 1,
'open_loop': 2,
'zone': 3,
'still': 4,
'closed_loop': 5,
'warm_up': 6}
[7]:
h.RANGES
[7]:
{'off': 0,
'31.6μA': 1,
'100μA': 2,
'316μA': 3,
'1mA': 4,
'3.16mA': 5,
'10mA': 6,
'31.6mA': 7,
'100mA': 8}
[8]:
h.POLARITIES
[8]:
{'unipolar': 0, 'bipolar': 1}
Working with closed loop control¶
To use a closed loop control, we need to set the P
, I
, D
values, choose an input_channel
that will be read within the closed loop, set the range of the heater (output_range
), set the setpoint
value (e.g. the target temperature), and start the operation by setting mode
to closed_loop
.
[9]:
h.P(10)
h.I(10)
h.D(0)
h.output_range("31.6μA")
h.input_channel(9)
[10]:
h.setpoint(0.01)
h.mode("closed_loop")
Units of the setpoint¶
Be careful when setting the value of the setpoint
- Lakeshore uses “preferred units” for it which are determined by the units
parameter of the chosen input_channel
. Thanks to that, Lakeshore 372 supports setting setpoint
in ohms
and kelvins
.
[11]:
ls.ch09.units()
[11]:
'kelvin'
[12]:
print(h.setpoint.__doc__) # when working in Jupyter, just use `h.setpoint?` syntax
The value of the setpoint in the preferred units of the control loop sensor (which is set via `input_channel` parameter)
Parameter class:
* `name` setpoint
* `label` Setpoint value (in sensor units)
* `unit`
* `vals` <Numbers 0<=v<=400>
Observe control loop working¶
Now we can observe how the temperature gets steered towards the setpoint (This is not implemented in the simulated instrument)
[14]:
import time
for i in range(5):
time.sleep(0.1)
print(f"T = {ls.ch09.temperature()}")
T = 4.0
T = 4.0
T = 4.0
T = 4.0
T = 4.0
Textual representation is not very convenient, hence let’s do the same but now with plotting (This is not implemented in the simulated instrument):
[15]:
%matplotlib notebook
import time
import numpy
from IPython.display import display
from ipywidgets import widgets
from matplotlib import pyplot as plt
def live_plot_temperature_reading(channel_to_read, read_period=0.2, n_reads=1000):
"""
Live plot the temperature reading from a Lakeshore sensor channel
Args:
channel_to_read:
Lakeshore channel object to read the temperature from
read_period:
time in seconds between two reads of the temperature
n_reads:
total number of reads to perform
"""
# Make a widget for a text display that is contantly being updated
text = widgets.Text()
display(text)
fig, ax = plt.subplots(1)
(line,) = ax.plot([], [], "*-")
ax.set_xlabel("Time, s")
ax.set_ylabel(f"Temperature, {channel_to_read.units()}")
fig.show()
plt.ion()
for i in range(n_reads):
time.sleep(read_period)
# Update the text field
text.value = f"T = {channel_to_read.temperature()}"
# Add new point to the data that is being plotted
line.set_ydata(numpy.append(line.get_ydata(), channel_to_read.temperature()))
line.set_xdata(numpy.arange(0, len(line.get_ydata()), 1) * read_period)
ax.relim() # Recalculate limits
ax.autoscale_view(True, True, True) # Autoscale
fig.canvas.draw() # Redraw
[16]:
live_plot_temperature_reading(channel_to_read=ls.ch09, read_period=0.01, n_reads=5)
Waiting to reach setpoint¶
As we have seen, the call of the parameter setpoint
is non-blocking. That means the function returns imediately without waiting for the setpoint to be reached. In many use-cases it is desirable to wait until a certain temperature regime has been reached. This can be achieved with wait_until_set_point_reached
method. There are also three parameters which allow to tune the behavior of this method.
See below:
[17]:
# time before reading the next temperature value
# in other words, wait half a second, then read the temperature and compare to setpoint
h.wait_cycle_time(0.5)
# wait until temperature within 5% of the setpoint
# the tolerance is defined as: |t_reading-t_setpoint|/t_reading
h.wait_tolerance(0.05)
# wait until temperature has been within the tolerance zone
# for `wait_equilibration_time` seconds
h.wait_equilibration_time(1.5)
[18]:
# do the waiting:
h.wait_until_set_point_reached()
Automatically selecting a heater range (based on temperature)¶
To automatically select a heater range, one can define temperature limits for the individual heater ranges:
[20]:
# all limits in K, 8 limits starting with limit for 31.6μA range
h.range_limits([0.021, 0.1, 0.2, 1.1, 2, 4, 8, 16])
[21]:
list(h.RANGES.keys())
[21]:
['off', '31.6μA', '100μA', '316μA', '1mA', '3.16mA', '10mA', '31.6mA', '100mA']
This means: from 0 K
to 0.021 K
use 31.6μA
, from 0.021 K
to 0.1 K
use 100μA
, and so on.
We can now set the range by giving a temperature using the set_range_from_temperature
method:
[22]:
h.set_range_from_temperature(0.15)
h.output_range()
[22]:
'316μA'
Sweeping/blocking paramameter¶
For compatibility with the legacy Loop construct, the Lakeshore driver exposes a blocking temperature parameter: blocking_t
. The setter for this parameter simply does:
def _set_blocking_t(self, t):
self.set_range_from_temperature(t)
self.setpoint(t)
self.wait_until_set_point_reached()
This parameter can be used in a doNd
-like loop.
Note that the range only gets set at the beginning of the sweep, i.e. according to the setpoint not according to the temperature reading.