Source code for qcodes.dataset.data_set_in_memory

from __future__ import annotations

import contextlib
import json
import logging
import os
import time
import warnings
from pathlib import Path
from typing import TYPE_CHECKING, Any, Literal

import numpy as np

from qcodes.dataset.data_set_protocol import (
    SPECS,
    BaseDataSet,
    CompletedError,
    ParameterData,
)
from qcodes.dataset.descriptions.dependencies import InterDependencies_
from qcodes.dataset.descriptions.rundescriber import RunDescriber
from qcodes.dataset.descriptions.versioning.converters import new_to_old
from qcodes.dataset.export_config import DataExportType
from qcodes.dataset.guids import generate_guid
from qcodes.dataset.linked_datasets.links import Link, links_to_str
from qcodes.dataset.sqlite.connection import ConnectionPlus, atomic
from qcodes.dataset.sqlite.database import conn_from_dbpath_or_conn
from qcodes.dataset.sqlite.queries import (
    RUNS_TABLE_COLUMNS,
    add_data_to_dynamic_columns,
    add_parameter,
    create_run,
    get_experiment_name_from_experiment_id,
    get_raw_run_attributes,
    get_runid_from_guid,
    get_sample_name_from_experiment_id,
    mark_run_complete,
    set_run_timestamp,
    update_parent_datasets,
    update_run_description,
)
from qcodes.utils import NumpyJSONEncoder

from .data_set_cache import DataSetCacheDeferred, DataSetCacheInMem
from .dataset_helpers import _add_run_to_runs_table
from .descriptions.versioning import serialization as serial
from .experiment_settings import get_default_experiment_id
from .exporters.export_info import ExportInfo
from .linked_datasets.links import str_to_links

if TYPE_CHECKING:
    from collections.abc import Callable, Mapping, Sequence

    import pandas as pd
    import xarray as xr

    from qcodes.dataset.descriptions.param_spec import ParamSpec, ParamSpecBase
    from qcodes.dataset.descriptions.versioning.rundescribertypes import Shapes

    from ..parameters import ParameterBase

log = logging.getLogger(__name__)


class DataSetInMem(BaseDataSet):
    def __init__(
        self,
        run_id: int,
        captured_run_id: int,
        counter: int,
        captured_counter: int,
        name: str,
        exp_id: int,
        exp_name: str,
        sample_name: str,
        guid: str,
        path_to_db: str | None,
        run_timestamp_raw: float | None,
        completed_timestamp_raw: float | None,
        snapshot: str | None = None,
        metadata: Mapping[str, Any] | None = None,
        rundescriber: RunDescriber | None = None,
        parent_dataset_links: Sequence[Link] | None = None,
        export_info: ExportInfo | None = None,
    ) -> None:
        """Note that the constructor is considered private.

        A ``DataSetInMem``
        should be constructed either using one of the load functions
        (``load_by_run_spec``, ``load_from_netcdf`` ...)
        or using the measurement context manager.
        """

        self._run_id = run_id
        self._captured_run_id = captured_run_id
        self._counter = counter
        self._captured_counter = captured_counter
        self._name = name
        self._exp_id = exp_id
        self._exp_name = exp_name
        self._sample_name = sample_name
        self._guid = guid
        self._cache = DataSetCacheInMem(self)
        self._run_timestamp_raw = run_timestamp_raw
        self._completed_timestamp_raw = completed_timestamp_raw
        self._path_to_db = path_to_db
        if metadata is None:
            self._metadata = {}
        else:
            self._metadata = dict(metadata)
        if rundescriber is None:
            interdeps = InterDependencies_()
            rundescriber = RunDescriber(interdeps, shapes=None)

        self._rundescriber = rundescriber
        if parent_dataset_links is not None:
            self._parent_dataset_links = list(parent_dataset_links)
        else:
            self._parent_dataset_links = []
        if export_info is not None:
            self._export_info = export_info
        else:
            self._export_info = ExportInfo({})
        self._metadata["export_info"] = self._export_info.to_str()
        self._snapshot_raw_data = snapshot

    def _dataset_is_in_runs_table(self, path_to_db: str | Path | None = None) -> bool:
        """
        Does this run exist in the given db

        """
        if isinstance(path_to_db, Path):
            path_to_db = str(path_to_db)

        with contextlib.closing(
            conn_from_dbpath_or_conn(conn=None, path_to_db=path_to_db)
        ) as conn:
            run_id = get_runid_from_guid(conn, self.guid)
        return run_id is not None

    def write_metadata_to_db(self, path_to_db: str | Path | None = None) -> None:
        from .experiment_container import load_or_create_experiment

        if path_to_db is None:
            path_to_db = self.path_to_db

        if self._dataset_is_in_runs_table(path_to_db=path_to_db):
            return
        if isinstance(path_to_db, Path):
            path_to_db = str(path_to_db)

        with contextlib.closing(
            conn_from_dbpath_or_conn(conn=None, path_to_db=path_to_db)
        ) as conn:
            with atomic(conn) as aconn:
                exp = load_or_create_experiment(
                    conn=aconn,
                    experiment_name=self.exp_name,
                    sample_name=self.sample_name,
                    load_last_duplicate=True,
                )
                counter, run_id, _ = _add_run_to_runs_table(
                    self, aconn, exp.exp_id, create_run_table=False
                )
            self._exp_id = exp.exp_id
            self._run_id = run_id
            self._counter = counter
            self._path_to_db = conn.path_to_dbfile

    @classmethod
    def _create_new_run(
        cls,
        name: str,
        path_to_db: Path | str | None = None,
        exp_id: int | None = None,
    ) -> DataSetInMem:
        if path_to_db is not None:
            path_to_db = str(path_to_db)

        with contextlib.closing(
            conn_from_dbpath_or_conn(conn=None, path_to_db=path_to_db)
        ) as conn:
            if exp_id is None:
                exp_id = get_default_experiment_id(conn)
            name = name or "dataset"
            sample_name = get_sample_name_from_experiment_id(conn, exp_id)
            exp_name = get_experiment_name_from_experiment_id(conn, exp_id)
            guid = generate_guid()

            run_counter, run_id, _ = create_run(
                conn, exp_id, name, guid=guid, parameters=None, create_run_table=False
            )

            ds = cls(
                run_id=run_id,
                captured_run_id=run_id,
                counter=run_counter,
                captured_counter=run_counter,
                name=name,
                exp_id=exp_id,
                exp_name=exp_name,
                sample_name=sample_name,
                guid=guid,
                path_to_db=conn.path_to_dbfile,
                run_timestamp_raw=None,
                completed_timestamp_raw=None,
                metadata=None,
            )

        return ds

    @classmethod
    def _load_from_netcdf(
        cls, path: Path | str, path_to_db: Path | str | None = None
    ) -> DataSetInMem:
        """
        Create a in memory dataset from a netcdf file.
        The netcdf file is expected to contain a QCoDeS dataset that
        has been exported using the QCoDeS netcdf export functions.

        Args:
            path: Path to the netcdf file to import.
            path_to_db: Optional path to a database where this dataset may be
                exported to. If not supplied the path can be given at export time
                or the dataset exported to the default db as set in the QCoDeS config.

        Returns:
            The loaded dataset.

        """
        # in the code below floats and ints loaded from attributes are explicitly casted
        # this is due to some older versions of qcodes writing them with a different backend
        # reading them back results in a numpy array of one element
        import xarray as xr

        with xr.open_dataset(path, engine="h5netcdf") as loaded_data:
            parent_dataset_links = str_to_links(
                loaded_data.attrs.get("parent_dataset_links", "[]")
            )
            if path_to_db is not None:
                path_to_db = str(path_to_db)

            with contextlib.closing(
                conn_from_dbpath_or_conn(conn=None, path_to_db=path_to_db)
            ) as conn:
                run_data = get_raw_run_attributes(conn, guid=loaded_data.guid)
                path_to_db = conn.path_to_dbfile

            if run_data is not None:
                run_id = run_data["run_id"]
                counter = run_data["counter"]
            else:
                run_id = int(loaded_data.captured_run_id)
                counter = int(loaded_data.captured_counter)

            path = str(path)
            path = os.path.abspath(path)

            export_info = ExportInfo.from_str(loaded_data.attrs.get("export_info", ""))
            export_info.export_paths["nc"] = path
            non_metadata = {
                "run_timestamp_raw",
                "completed_timestamp_raw",
                "ds_name",
                "exp_name",
                "sample_name",
                "export_info",
                "parent_dataset_links",
            }

            metadata_keys = (
                set(loaded_data.attrs.keys()) - set(RUNS_TABLE_COLUMNS) - non_metadata
            )
            metadata = {}
            for key in metadata_keys:
                data = loaded_data.attrs[key]
                if isinstance(data, np.ndarray) and data.size == 1:
                    data = data[0]
                metadata[str(key)] = data

            ds = cls(
                run_id=run_id,
                captured_run_id=int(loaded_data.captured_run_id),
                counter=counter,
                captured_counter=int(loaded_data.captured_counter),
                name=loaded_data.ds_name,
                exp_id=0,
                exp_name=loaded_data.exp_name,
                sample_name=loaded_data.sample_name,
                guid=loaded_data.guid,
                path_to_db=path_to_db,
                run_timestamp_raw=float(loaded_data.run_timestamp_raw),
                completed_timestamp_raw=float(loaded_data.completed_timestamp_raw),
                metadata=metadata,
                rundescriber=serial.from_json_to_current(loaded_data.run_description),
                parent_dataset_links=parent_dataset_links,
                export_info=export_info,
                snapshot=loaded_data.snapshot,
            )
            ds._cache = DataSetCacheDeferred(ds, path)

        return ds

    @classmethod
    def _load_from_db(cls, conn: ConnectionPlus, guid: str) -> DataSetInMem:
        run_attributes = get_raw_run_attributes(conn, guid)
        if run_attributes is None:
            raise RuntimeError(
                f"Could not find the requested run with GUID: {guid} in the db"
            )

        metadata = run_attributes["metadata"]

        export_info_str = metadata.get("export_info", "")
        export_info = ExportInfo.from_str(export_info_str)

        ds = cls(
            run_id=run_attributes["run_id"],
            captured_run_id=run_attributes["captured_run_id"],
            counter=run_attributes["counter"],
            captured_counter=run_attributes["captured_counter"],
            name=run_attributes["name"],
            exp_id=run_attributes["experiment"]["exp_id"],
            exp_name=run_attributes["experiment"]["name"],
            sample_name=run_attributes["experiment"]["sample_name"],
            guid=guid,
            path_to_db=conn.path_to_dbfile,
            run_timestamp_raw=run_attributes["run_timestamp"],
            completed_timestamp_raw=run_attributes["completed_timestamp"],
            metadata=metadata,
            rundescriber=serial.from_json_to_current(run_attributes["run_description"]),
            parent_dataset_links=str_to_links(run_attributes["parent_dataset_links"]),
            export_info=export_info,
            snapshot=run_attributes["snapshot"],
        )
        xr_path_temp = export_info.export_paths.get("nc")
        xr_path = Path(xr_path_temp) if xr_path_temp is not None else None

        cls._set_cache_from_netcdf(ds, xr_path)
        return ds

    @classmethod
    def _set_cache_from_netcdf(cls, ds: DataSetInMem, xr_path: Path | None) -> bool:
        success = True
        if xr_path is not None and xr_path.is_file():
            ds._cache = DataSetCacheDeferred(ds, xr_path)
        elif xr_path is not None and not xr_path.is_file():
            success = False
            warnings.warn(
                f"Could not load raw data for dataset with guid : {ds.guid} from location {xr_path}"
            )
        else:
            warnings.warn(f"No raw data stored for dataset with guid : {ds.guid}")
            success = False
        return success

    def set_netcdf_location(self, path: str | Path) -> None:
        """
        Change the location that a DataSetInMem refers to and
        load the raw data into the cache from this location.

        This may be useful if loading the dataset from a database raises a warning
        since the location of the raw data has moved. If this is the case you may
        be able to use this method to update the metadata in the database to refer to
        the new location.
        """
        if isinstance(path, str):
            path = Path(path)
        data_loaded = self._set_cache_from_netcdf(self, path)
        if data_loaded:
            export_info = self.export_info
            export_info.export_paths["nc"] = str(path)
            self._set_export_info(export_info)
        else:
            raise FileNotFoundError(f"Could not load a netcdf file from {path}")

    @staticmethod
    def _from_xarray_dataset_to_qcodes_raw_data(
        xr_data: xr.Dataset,
    ) -> dict[str, dict[str, np.ndarray]]:
        output: dict[str, dict[str, np.ndarray]] = {}
        for datavar in xr_data.data_vars:
            output[str(datavar)] = {}
            data = xr_data[datavar]
            output[str(datavar)][str(datavar)] = data.data

            all_coords = []
            for index_name in data.dims:
                index = data.indexes[index_name]

                coords = {name: data.coords[name] for name in index.names}
                all_coords.append(coords)

            if len(all_coords) > 1:
                # if there are more than on index this cannot be a multiindex dataset
                # so we can expand the data
                coords_unexpanded = []
                for coord_name in data.dims:
                    coords_unexpanded.append(xr_data[coord_name].data)
                coords_arrays = np.meshgrid(*coords_unexpanded, indexing="ij")
                for coord_name, coord_array in zip(data.dims, coords_arrays):
                    output[str(datavar)][str(coord_name)] = coord_array
            elif len(all_coords) == 1:
                # this is either a multiindex or a single regular index
                # in both cases we do not need to reshape the data
                coords = all_coords[0]
                for coord_name, coord in coords.items():
                    output[str(datavar)][str(coord_name)] = coord.data

        return output

    def prepare(
        self,
        *,
        snapshot: Mapping[Any, Any],
        interdeps: InterDependencies_,
        shapes: Shapes | None = None,
        parent_datasets: Sequence[Mapping[Any, Any]] = (),
        write_in_background: bool = False,
    ) -> None:
        if not self.pristine:
            raise RuntimeError("Cannot prepare a dataset that is not pristine.")

        self.add_snapshot(json.dumps(snapshot, cls=NumpyJSONEncoder))

        if interdeps == InterDependencies_():
            raise RuntimeError("No parameters supplied")

        self._set_interdependencies(interdeps, shapes)
        links = [Link(head=self.guid, **pdict) for pdict in parent_datasets]
        self._set_parent_dataset_links(links)

        if self.pristine:
            self._perform_start_actions()
            self.cache.prepare()

    @property
    def pristine(self) -> bool:
        """Is this :class:`.DataSetInMem` pristine?

        A pristine :class:`.DataSetInMem` has not yet been started,
        meaning that parameters can still be added and removed, but results
        can not be added.
        """
        return self._run_timestamp_raw is None and self._completed_timestamp_raw is None

    @property
    def running(self) -> bool:
        """
        Is this :class:`.DataSetInMem` currently running?

        A running :class:`.DataSetInMem` has been started,
        but not yet completed.
        """
        return (
            self._run_timestamp_raw is not None
            and self._completed_timestamp_raw is None
        )

    @property
    def completed(self) -> bool:
        """
        Is this :class:`.DataSetInMem` completed?

        A completed :class:`.DataSetInMem` may not be modified in
        any way.
        """
        return self._completed_timestamp_raw is not None

    def mark_completed(self) -> None:
        """
        Mark :class:`.DataSetInMem` as complete and thus read only and notify the subscribers
        """
        if self.completed:
            return
        if self.pristine:
            raise RuntimeError(
                "Can not mark a dataset as complete before it "
                "has been marked as started."
            )

        self._complete(True)

    @property
    def run_id(self) -> int:
        return self._run_id

    @property
    def captured_run_id(self) -> int:
        return self._captured_run_id

    @property
    def counter(self) -> int:
        return self._counter

    @property
    def captured_counter(self) -> int:
        return self._captured_counter

    @property
    def guid(self) -> str:
        return self._guid

    @property
    def number_of_results(self) -> int:
        return self.__len__()

    @property
    def name(self) -> str:
        return self._name

    @property
    def exp_name(self) -> str:
        return self._exp_name

    @property
    def exp_id(self) -> int:
        return self._exp_id

    @property
    def sample_name(self) -> str:
        return self._sample_name

    @property
    def path_to_db(self) -> str | None:
        return self._path_to_db

    @property
    def run_timestamp_raw(self) -> float | None:
        """
        Returns run timestamp as number of seconds since the Epoch

        The run timestamp is the moment when the measurement for this run
        started.
        """
        return self._run_timestamp_raw

    @property
    def completed_timestamp_raw(self) -> float | None:
        """
        Returns timestamp when measurement run was completed
        as number of seconds since the Epoch

        If the run (or the dataset) is not completed, then returns None.
        """
        return self._completed_timestamp_raw

    @property
    def snapshot(self) -> dict[str, Any] | None:
        """Snapshot of the run as dictionary (or None)."""
        snapshot_json = self._snapshot_raw
        if snapshot_json is not None:
            return json.loads(snapshot_json)
        else:
            return None

    def add_snapshot(self, snapshot: str, overwrite: bool = False) -> None:
        """
        Adds a snapshot to this run.

        Args:
            snapshot: the raw JSON dump of the snapshot
            overwrite: force overwrite an existing snapshot

        """
        if self.snapshot is None or overwrite:
            self._add_to_dyn_column_if_in_db("snapshot", snapshot)
            self._snapshot_raw_data = snapshot
        elif self.snapshot is not None and not overwrite:
            log.warning(
                "This dataset already has a snapshot. Use overwrite"
                "=True to overwrite that"
            )

    @property
    def _snapshot_raw(self) -> str | None:
        """Snapshot of the run as a JSON-formatted string (or None)."""
        return self._snapshot_raw_data

    def add_metadata(self, tag: str, metadata: Any) -> None:
        """
        Adds metadata to the :class:`.DataSet`.

        The metadata is stored under the provided tag.
        Note that None is not allowed as a metadata value.

        Args:
            tag: represents the key in the metadata dictionary
            metadata: actual metadata

        """

        self._metadata[tag] = metadata
        self._add_to_dyn_column_if_in_db(tag, metadata)
        self._add_metadata_to_netcdf_if_nc_exported(tag, metadata)

    def _add_to_dyn_column_if_in_db(self, tag: str, data: Any) -> None:
        if self._dataset_is_in_runs_table():
            with contextlib.closing(
                conn_from_dbpath_or_conn(conn=None, path_to_db=self._path_to_db)
            ) as conn:
                with atomic(conn) as aconn:
                    add_data_to_dynamic_columns(aconn, self.run_id, {tag: data})

    @property
    def metadata(self) -> dict[str, Any]:
        return self._metadata

    @property
    def paramspecs(self) -> dict[str, ParamSpec]:
        return {ps.name: ps for ps in self._get_paramspecs()}

    @property
    def description(self) -> RunDescriber:
        return self._rundescriber

    @property
    def parent_dataset_links(self) -> list[Link]:
        """
        Return a list of Link objects. Each Link object describes a link from
        this dataset to one of its parent datasets
        """
        return self._parent_dataset_links

    @property
    def cache(self) -> DataSetCacheInMem:
        return self._cache

    @property
    def export_info(self) -> ExportInfo:
        return self._export_info

    def _set_export_info(self, export_info: ExportInfo) -> None:
        tag = "export_info"
        metadata = export_info.to_str()

        self._metadata[tag] = metadata
        self._add_to_dyn_column_if_in_db(tag, metadata)

        self._export_info = export_info

    def _enqueue_results(self, result_dict: Mapping[ParamSpecBase, np.ndarray]) -> None:
        """
        Enqueue the results, for this dataset directly into cache

        Before we can enqueue the results, all values of the results dict
        must have the same length. We enqueue each parameter tree separately,
        effectively mimicking making one call to add_results per parameter
        tree.

        Deal with 'numeric' type parameters. If a 'numeric' top level parameter
        has non-scalar shape, it must be unrolled into a list of dicts of
        single values (database).
        """
        self._raise_if_not_writable()
        interdeps = self._rundescriber.interdeps

        toplevel_params = set(interdeps.dependencies).intersection(set(result_dict))
        new_results: dict[str, dict[str, np.ndarray]] = {}
        for toplevel_param in toplevel_params:
            inff_params = set(interdeps.inferences.get(toplevel_param, ()))
            deps_params = set(interdeps.dependencies.get(toplevel_param, ()))
            all_params = inff_params.union(deps_params).union({toplevel_param})

            new_results[toplevel_param.name] = {}
            new_results[toplevel_param.name][toplevel_param.name] = (
                self._reshape_array_for_cache(
                    toplevel_param, result_dict[toplevel_param]
                )
            )
            for param in all_params:
                if param is not toplevel_param:
                    new_results[toplevel_param.name][param.name] = (
                        self._reshape_array_for_cache(param, result_dict[param])
                    )

        # Finally, handle standalone parameters

        standalones = set(interdeps.standalones).intersection(set(result_dict))

        if standalones:
            for st in standalones:
                new_results[st.name] = {
                    st.name: self._reshape_array_for_cache(st, result_dict[st])
                }

        self.cache.add_data(new_results)

    def _flush_data_to_database(self, block: bool = False) -> None:
        pass

    # not part of the protocol specified api

    def _set_parent_dataset_links(self, links: list[Link]) -> None:
        """
        Assign one or more links to parent datasets to this dataset. It is an
        error to assign links to a non-pristine dataset

        Args:
            links: The links to assign to this dataset

        """
        if not self.pristine:
            raise RuntimeError(
                "Can not set parent dataset links on a dataset "
                "that has been started."
            )

        if not all(isinstance(link, Link) for link in links):
            raise ValueError("Invalid input. Did not receive a list of Links")

        for link in links:
            if link.head != self.guid:
                raise ValueError(
                    "Invalid input. All links must point to this dataset. "
                    "Got link(s) with head(s) pointing to another dataset."
                )

        self._parent_dataset_links = links

    def _set_interdependencies(
        self, interdeps: InterDependencies_, shapes: Shapes | None = None
    ) -> None:
        """
        Set the interdependencies object (which holds all added
        parameters and their relationships) of this dataset and
        optionally the shapes object that holds information about
        the shape of the data to be measured.
        """
        if not isinstance(interdeps, InterDependencies_):
            raise TypeError(
                f"Wrong input type. Expected InterDepencies_, got {type(interdeps)}"
            )

        if not self.pristine:
            mssg = "Can not set interdependencies on a DataSet that has been started."
            raise RuntimeError(mssg)
        self._rundescriber = RunDescriber(interdeps, shapes=shapes)

    def _get_paramspecs(self) -> SPECS:
        old_interdeps = new_to_old(self.description.interdeps)
        return list(old_interdeps.paramspecs)

    def _complete(self, value: bool) -> None:
        with contextlib.closing(
            conn_from_dbpath_or_conn(conn=None, path_to_db=self._path_to_db)
        ) as conn:
            if value:
                self._completed_timestamp_raw = time.time()
                mark_run_complete(conn, self.run_id, self._completed_timestamp_raw)

    def _perform_start_actions(self) -> None:
        """
        Perform the actions that must take place once the run has been started
        """

        with contextlib.closing(
            conn_from_dbpath_or_conn(conn=None, path_to_db=self._path_to_db)
        ) as conn:
            paramspecs = new_to_old(self.description.interdeps).paramspecs

            for spec in paramspecs:
                add_parameter(
                    spec, conn=conn, run_id=self.run_id, insert_into_results_table=False
                )

            desc_str = serial.to_json_for_storage(self.description)

            update_run_description(conn, self.run_id, desc_str)
            self._run_timestamp_raw = time.time()
            set_run_timestamp(conn, self.run_id, self._run_timestamp_raw)

            pdl_str = links_to_str(self._parent_dataset_links)
            update_parent_datasets(conn, self.run_id, pdl_str)

    def _raise_if_not_writable(self) -> None:
        if self.pristine:
            raise RuntimeError(
                "This DataSet has not been marked as started. "
                "Please mark the DataSet as started before "
                "adding results to it."
            )
        if self.completed:
            raise CompletedError(
                "This DataSet is complete, no further results can be added to it."
            )

    def __len__(self) -> int:
        """
        The in memory dataset does not have a concept of sqlite rows
        so the length is represented by the number of all datapoints,
        summing across parameter trees.
        """
        values: list[int] = []
        for sub_dataset in self.cache.data().values():
            subvals = tuple(val.size for val in sub_dataset.values() if val is not None)
            values.extend(subvals)

        if len(values):
            return sum(values)
        else:
            return 0

    def __repr__(self) -> str:
        out = []
        heading = f"{self.name} #{self.run_id}@memory"
        out.append(heading)
        out.append("-" * len(heading))
        ps = self.description.interdeps.paramspecs
        if len(ps) > 0:
            for p in ps:
                out.append(f"{p.name} - {p.type}")

        return "\n".join(out)

    @property
    def _parameters(self) -> str | None:
        psnames = [ps.name for ps in self.description.interdeps.paramspecs]
        if len(psnames) > 0:
            return ",".join(psnames)
        else:
            return None

    def to_xarray_dataarray_dict(
        self,
        *params: str | ParamSpec | ParameterBase,
        start: int | None = None,
        end: int | None = None,
        use_multi_index: Literal["auto", "always", "never"] = "auto",
    ) -> dict[str, xr.DataArray]:
        self._warn_if_set(*params, start=start, end=end)
        return self.cache.to_xarray_dataarray_dict()

    def to_xarray_dataset(
        self,
        *params: str | ParamSpec | ParameterBase,
        start: int | None = None,
        end: int | None = None,
        use_multi_index: Literal["auto", "always", "never"] = "auto",
    ) -> xr.Dataset:
        self._warn_if_set(*params, start=start, end=end)
        return self.cache.to_xarray_dataset()

    def to_pandas_dataframe_dict(
        self,
        *params: str | ParamSpec | ParameterBase,
        start: int | None = None,
        end: int | None = None,
    ) -> dict[str, pd.DataFrame]:
        self._warn_if_set(*params, start=start, end=end)
        return self.cache.to_pandas_dataframe_dict()

    def to_pandas_dataframe(
        self,
        *params: str | ParamSpec | ParameterBase,
        start: int | None = None,
        end: int | None = None,
    ) -> pd.DataFrame:
        self._warn_if_set(*params, start=start, end=end)
        return self.cache.to_pandas_dataframe()

    def get_parameter_data(
        self,
        *params: str | ParamSpec | ParameterBase,
        start: int | None = None,
        end: int | None = None,
        callback: Callable[[float], None] | None = None,
    ) -> ParameterData:
        self._warn_if_set(*params, start=start, end=end)
        return self.cache.data()

    @staticmethod
    def _warn_if_set(
        *params: str | ParamSpec | ParameterBase,
        start: int | None = None,
        end: int | None,
    ) -> None:
        if len(params) > 0 or start is not None or end is not None:
            warnings.warn(
                "Passing params, start or stop to to_xarray_... and "
                "to_pandas_... methods has no effect for DataSetInMem. "
                "This will be an error in the future."
            )


[docs] def load_from_netcdf( path: Path | str, path_to_db: Path | str | None = None ) -> DataSetInMem: """ Create a in memory dataset from a netcdf file. The netcdf file is expected to contain a QCoDeS dataset that has been exported using the QCoDeS netcdf export functions. Args: path: Path to the netcdf file to import. path_to_db: Optional path to a database where this dataset may be exported to. If not supplied the path can be given at export time or the dataset exported to the default db as set in the QCoDeS config. Returns: The loaded dataset. """ return DataSetInMem._load_from_netcdf(path=path, path_to_db=path_to_db)
[docs] def load_from_file( path: Path | str, path_to_db: Path | str | None = None ) -> DataSetInMem: """ Create an in-memory dataset from a file. The file is expected to contain a QCoDeS dataset that has been exported using the QCoDeS export functions. Currently, this only supports loading from netcdf files. Args: path: Path to the file to import. path_to_db: Optional path to a database where this dataset may be exported to. If not supplied the path can be given at export time or the dataset exported to the default db as set in the QCoDeS config. Returns: The loaded dataset. """ path = Path(path) if not path.is_file(): raise FileNotFoundError(f"File {path} not found.") if DataExportType.NETCDF.value == path.suffix.replace(".", ""): return DataSetInMem._load_from_netcdf(path=path, path_to_db=path_to_db) else: raise ValueError( f"Loading file of type {path.suffix} is not supported." "Please refer to https://github.com/QCoDeS/Qcodes/issues" "to find existing or create a new feature request." )