R/afterhours_dist.R
afterhours_dist.Rd
Analyse the distribution of weekly after-hours collaboration time. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.
afterhours_dist(
data,
hrvar = "Organization",
mingroup = 5,
return = "plot",
cut = c(1, 2, 3)
)
A Standard Person Query dataset in the form of a data frame.
String containing the name of the HR Variable by which to split
metrics. Defaults to "Organization"
. To run the analysis on the total
instead of splitting by an HR attribute, supply NULL
(without quotes).
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
String specifying what to return. This must be one of the following strings:
"plot"
"table"
See Value
for more information.
A vector specifying the cuts to use for the data, accepting "default" or "range-cut" as character vector, or a numeric value of length three to specify the exact breaks to use. e.g. c(1, 3, 5)
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A stacked bar plot for the metric.
"table"
: data frame. A summary table for the metric.
Uses the metric After_hours_collaboration_hours
.
See create_dist()
for applying the same analysis to a different metric.
Other Visualization:
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar_asis()
,
create_bar()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line_asis()
,
create_line()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_dist()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other After-hours Collaboration:
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
external_rank()
# Return plot
afterhours_dist(sq_data, hrvar = "Organization")
# Return summary table
afterhours_dist(sq_data, hrvar = "Organization", return = "table")
#> # A tibble: 15 × 5
#> group `1 - 2 hours` `2 - 3 hours` `3+ hours` Employee_Count
#> <fct> <dbl> <dbl> <dbl> <int>
#> 1 Biz Dev 0.493 0.493 0.0133 75
#> 2 Customer Service 0.295 0.508 0.197 61
#> 3 Facilities 0.222 0.403 0.375 72
#> 4 Finance-Corporate 0.5 0.294 0.206 68
#> 5 Finance-East 0.271 0.1 0.629 70
#> 6 Finance-South 0.309 0.296 0.395 81
#> 7 Finance-West 0.205 0.342 0.452 73
#> 8 Financial Planning 0.373 0.48 0.147 75
#> 9 G&A Central 0.281 0.316 0.404 57
#> 10 G&A East 0.369 0.538 0.0923 65
#> 11 G&A South 0.158 0.382 0.461 76
#> 12 Human Resources 0.0563 0.310 0.634 71
#> 13 IT-Corporate 0.191 0.382 0.426 68
#> 14 IT-East 0.306 0.387 0.306 62
#> 15 Inventory Management 0.0833 0.283 0.633 60
# Return result with a custom specified breaks
afterhours_dist(sq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))