Analyse the distribution of weekly after-hours collaboration time. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.

afterhours_dist(
  data,
  hrvar = "Organization",
  mingroup = 5,
  return = "plot",
  cut = c(1, 2, 3)
)

Arguments

data

A Standard Person Query dataset in the form of a data frame.

hrvar

String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup

Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return

String specifying what to return. This must be one of the following strings:

  • "plot"

  • "table"

See Value for more information.

cut

A vector specifying the cuts to use for the data, accepting "default" or "range-cut" as character vector, or a numeric value of length three to specify the exact breaks to use. e.g. c(1, 3, 5)

Value

A different output is returned depending on the value passed to the return argument:

  • "plot": 'ggplot' object. A stacked bar plot for the metric.

  • "table": data frame. A summary table for the metric.

Details

Uses the metric After_hours_collaboration_hours. See create_dist() for applying the same analysis to a different metric.

See also

Other Visualization: afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other After-hours Collaboration: afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), external_rank()

Examples

# Return plot
afterhours_dist(sq_data, hrvar = "Organization")


# Return summary table
afterhours_dist(sq_data, hrvar = "Organization", return = "table")
#> # A tibble: 15 × 5
#>    group                `1 - 2 hours` `2 - 3 hours` `3+ hours` Employee_Count
#>    <fct>                        <dbl>         <dbl>      <dbl>          <int>
#>  1 Biz Dev                     0.493          0.493     0.0133             75
#>  2 Customer Service            0.295          0.508     0.197              61
#>  3 Facilities                  0.222          0.403     0.375              72
#>  4 Finance-Corporate           0.5            0.294     0.206              68
#>  5 Finance-East                0.271          0.1       0.629              70
#>  6 Finance-South               0.309          0.296     0.395              81
#>  7 Finance-West                0.205          0.342     0.452              73
#>  8 Financial Planning          0.373          0.48      0.147              75
#>  9 G&A Central                 0.281          0.316     0.404              57
#> 10 G&A East                    0.369          0.538     0.0923             65
#> 11 G&A South                   0.158          0.382     0.461              76
#> 12 Human Resources             0.0563         0.310     0.634              71
#> 13 IT-Corporate                0.191          0.382     0.426              68
#> 14 IT-East                     0.306          0.387     0.306              62
#> 15 Inventory Management        0.0833         0.283     0.633              60

# Return result with a custom specified breaks
afterhours_dist(sq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))