R/collaboration_dist.R
collaboration_dist.Rd
Analyze the distribution of Collaboration Hours. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.
A Standard Person Query dataset in the form of a data frame.
String containing the name of the HR Variable by which to split
metrics. Defaults to "Organization"
. To run the analysis on the total
instead of splitting by an HR attribute, supply NULL
(without quotes).
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
String specifying what to return. This must be one of the following strings:
"plot"
"table"
See Value
for more information.
A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A stacked bar plot for the metric.
"table"
: data frame. A summary table for the metric.
The metric Collaboration_hours
is used in the calculations. Please ensure
that your query contains a metric with the exact same name.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar_asis()
,
create_bar()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line_asis()
,
create_line()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_dist()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Collaboration:
collaboration_area()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
# Return plot
collaboration_dist(sq_data, hrvar = "Organization")
# Return summary table
collaboration_dist(sq_data, hrvar = "Organization", return = "table")
#> # A tibble: 15 × 6
#> group `< 15 hours` `15 - 20 hours` 20 - 25 h…¹ 25+ h…² Emplo…³
#> <fct> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 Biz Dev 0.52 0.48 NA NA 75
#> 2 Customer Service 0.295 0.492 0.0492 0.164 61
#> 3 Facilities 0.236 0.403 0.278 0.0833 72
#> 4 Finance-Corporate 0.471 0.309 0.176 0.0441 68
#> 5 Finance-East 0.257 0.114 0.129 0.5 70
#> 6 Finance-South 0.407 0.235 0.0494 0.309 81
#> 7 Finance-West 0.192 0.342 0.192 0.274 73
#> 8 Financial Planning 0.373 0.48 0.0133 0.133 75
#> 9 G&A Central 0.281 0.333 0.193 0.193 57
#> 10 G&A East 0.4 0.508 0.0923 NA 65
#> 11 G&A South 0.197 0.0789 0.342 0.382 76
#> 12 Human Resources 0.141 0.0563 0.310 0.493 71
#> 13 IT-Corporate 0.206 0.0441 0.368 0.382 68
#> 14 IT-East 0.290 0.0806 0.323 0.306 62
#> 15 Inventory Management 0.0333 0.0333 0.45 0.483 60
#> # … with abbreviated variable names ¹`20 - 25 hours`, ²`25+ hours`,
#> # ³Employee_Count