Analyze Meeting Hours distribution. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.
meeting_dist(
data,
hrvar = "Organization",
mingroup = 5,
return = "plot",
cut = c(5, 10, 15)
)
A Standard Person Query dataset in the form of a data frame.
String containing the name of the HR Variable by which to split
metrics. Defaults to "Organization"
. To run the analysis on the total
instead of splitting by an HR attribute, supply NULL
(without quotes).
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
String specifying what to return. This must be one of the following strings:
"plot"
"table"
See Value
for more information.
A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A stacked bar plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar_asis()
,
create_bar()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line_asis()
,
create_line()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_dist()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Meetings:
meeting_extract()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_skim()
,
meeting_summary()
,
meeting_tm_report()
,
meeting_trend()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_dist()
,
meetingtype_summary()
# Return plot
meeting_dist(sq_data, hrvar = "Organization")
# Return summary table
meeting_dist(sq_data, hrvar = "Organization", return = "table")
#> # A tibble: 15 × 6
#> group `< 5 hours` `5 - 10 hours` 10 - 15 hou…¹ 15+ h…² Emplo…³
#> <fct> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 Biz Dev 0.08 0.907 0.0133 NA 75
#> 2 Customer Service 0.0164 0.770 0.148 0.0656 61
#> 3 Facilities 0.0139 0.611 0.375 NA 72
#> 4 Finance-Corporate 0.0294 0.735 0.221 0.0147 68
#> 5 Finance-East 0.0571 0.329 0.414 0.2 70
#> 6 Finance-South 0.0988 0.531 0.321 0.0494 81
#> 7 Finance-West 0.0137 0.493 0.452 0.0411 73
#> 8 Financial Planning 0.0667 0.76 0.12 0.0533 75
#> 9 G&A Central 0.0351 0.596 0.316 0.0526 57
#> 10 G&A East 0.0154 0.862 0.123 NA 65
#> 11 G&A South NA 0.316 0.526 0.158 76
#> 12 Human Resources NA 0.225 0.535 0.239 71
#> 13 IT-Corporate 0.132 0.132 0.529 0.206 68
#> 14 IT-East 0.0645 0.323 0.516 0.0968 62
#> 15 Inventory Management NA 0.117 0.583 0.3 60
#> # … with abbreviated variable names ¹`10 - 15 hours`, ²`15+ hours`,
#> # ³Employee_Count
# Return result with a custom specified breaks
meeting_dist(sq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))