Analyze Meeting Hours distribution. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.

meeting_dist(
  data,
  hrvar = "Organization",
  mingroup = 5,
  return = "plot",
  cut = c(5, 10, 15)
)

Arguments

data

A Standard Person Query dataset in the form of a data frame.

hrvar

String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup

Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return

String specifying what to return. This must be one of the following strings:

  • "plot"

  • "table"

See Value for more information.

cut

A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)

Value

A different output is returned depending on the value passed to the return argument:

  • "plot": 'ggplot' object. A stacked bar plot for the metric.

  • "table": data frame. A summary table for the metric.

See also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Meetings: meeting_extract(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_skim(), meeting_summary(), meeting_tm_report(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary()

Examples

# Return plot
meeting_dist(sq_data, hrvar = "Organization")


# Return summary table
meeting_dist(sq_data, hrvar = "Organization", return = "table")
#> # A tibble: 15 × 6
#>    group                `< 5 hours` `5 - 10 hours` 10 - 15 hou…¹ 15+ h…² Emplo…³
#>    <fct>                      <dbl>          <dbl>         <dbl>   <dbl>   <int>
#>  1 Biz Dev                   0.08            0.907        0.0133 NA           75
#>  2 Customer Service          0.0164          0.770        0.148   0.0656      61
#>  3 Facilities                0.0139          0.611        0.375  NA           72
#>  4 Finance-Corporate         0.0294          0.735        0.221   0.0147      68
#>  5 Finance-East              0.0571          0.329        0.414   0.2         70
#>  6 Finance-South             0.0988          0.531        0.321   0.0494      81
#>  7 Finance-West              0.0137          0.493        0.452   0.0411      73
#>  8 Financial Planning        0.0667          0.76         0.12    0.0533      75
#>  9 G&A Central               0.0351          0.596        0.316   0.0526      57
#> 10 G&A East                  0.0154          0.862        0.123  NA           65
#> 11 G&A South                NA               0.316        0.526   0.158       76
#> 12 Human Resources          NA               0.225        0.535   0.239       71
#> 13 IT-Corporate              0.132           0.132        0.529   0.206       68
#> 14 IT-East                   0.0645          0.323        0.516   0.0968      62
#> 15 Inventory Management     NA               0.117        0.583   0.3         60
#> # … with abbreviated variable names ¹​`10 - 15 hours`, ²​`15+ hours`,
#> #   ³​Employee_Count

# Return result with a custom specified breaks
meeting_dist(sq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))