This function scans a standard query output for groups with high levels of 'Manager 1:1 Time'. Returns a plot by default, with an option to return a table with a all of groups (across multiple HR attributes) ranked by manager 1:1 time.

one2one_rank(
  data,
  hrvar = extract_hr(data),
  mingroup = 5,
  mode = "simple",
  plot_mode = 1,
  return = "plot"
)

Arguments

data

A Standard Person Query dataset in the form of a data frame.

hrvar

String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup

Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

mode

String to specify calculation mode. Must be either:

  • "simple"

  • "combine"

plot_mode

Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when return = "plot".

  • 1: Top and bottom five groups across the data population are highlighted

  • 2: Top and bottom groups per organizational attribute are highlighted

return

String specifying what to return. This must be one of the following strings:

  • "plot" (default)

  • "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

  • "plot": 'ggplot' object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output if mode is set to "combine".

  • "table": data frame. A summary table for the metric.

Details

Uses the metric Meeting_hours_with_manager_1_on_1. See create_rank() for applying the same analysis to a different metric.

See also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Managerial Relations: mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_sum(), one2one_trend()

Examples

# Return rank table
one2one_rank(
  data = sq_data,
  return = "table"
)
#> # A tibble: 18 × 4
#>    hrvar            group              Meeting_hours_with_manager_1_on_1     n
#>    <chr>            <chr>                                          <dbl> <int>
#>  1 FunctionType     Engineering                                    0.505    49
#>  2 FunctionType     IT                                             0.458    22
#>  3 FunctionType     Sales                                          0.343    66
#>  4 Organization     Customer Service                               0.327    61
#>  5 LevelDesignation Senior IC                                      0.312    67
#>  6 FunctionType     Marketing                                      0.304   125
#>  7 FunctionType     R_and_D                                        0.291    74
#>  8 LevelDesignation Junior IC                                      0.282    58
#>  9 Organization     Human Resources                                0.277    71
#> 10 LevelDesignation Manager                                        0.276   200
#> 11 Organization     Finance                                        0.260   292
#> 12 LevelDesignation Support                                        0.257   257
#> 13 Organization     Financial Planning                             0.253    75
#> 14 Organization     IT                                             0.243   130
#> 15 FunctionType     G_and_A                                        0.216   104
#> 16 FunctionType     Finance                                        0.182    74
#> 17 LevelDesignation Director                                       0.168    43
#> 18 FunctionType     Operations                                     0.113   115

# Return plot
one2one_rank(
  data = sq_data,
  return = "plot"
)