Analyze weekly email hours distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.
email_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
A Standard Person Query dataset in the form of a data frame.
String containing the name of the HR Variable by which to split
metrics. Defaults to "Organization"
. To run the analysis on the total
instead of splitting by an HR attribute, supply NULL
(without quotes).
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
String specifying what to return. This must be one of the following strings:
"plot"
"table"
See Value
for more information.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A jittered scatter plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar_asis()
,
create_bar()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line_asis()
,
create_line()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_dist()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Emails:
email_dist()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
# Return plot
email_fizz(sq_data, hrvar = "Organization", return = "plot")
# Return summary table
email_fizz(sq_data, hrvar = "Organization", return = "table")
#> # A tibble: 15 × 8
#> group mean median sd min max range n
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 Biz Dev 7.72 7.71 1.25 4.98 11.0 6.04 75
#> 2 Customer Service 9.49 9.02 2.44 4.95 15.4 10.5 61
#> 3 Facilities 9.20 8.82 2.38 5.49 14.2 8.75 72
#> 4 Finance-Corporate 8.13 7.53 2.18 4.84 13.4 8.55 68
#> 5 Finance-East 10.8 11.9 3.51 4.34 16.4 12.1 70
#> 6 Finance-South 9.37 8.49 3.15 4.51 15.9 11.4 81
#> 7 Finance-West 10.2 9.76 3.04 5.54 15.5 9.99 73
#> 8 Financial Planning 8.75 8.23 2.42 5.79 16.7 10.9 75
#> 9 G&A Central 9.65 9.14 2.75 5.47 15.3 9.79 57
#> 10 G&A East 8.36 8.26 1.47 5.25 11.7 6.50 65
#> 11 G&A South 11.4 11.7 3.09 4.98 17.7 12.7 76
#> 12 Human Resources 11.8 12.1 2.60 5.56 17.7 12.1 71
#> 13 IT-Corporate 11.5 11.1 3.70 4.86 21.1 16.3 68
#> 14 IT-East 9.78 10.3 2.55 5.33 15.6 10.3 62
#> 15 Inventory Management 12.5 11.9 2.91 5.83 19.7 13.8 60