This function scans a standard query output for groups with high levels of Weekly Meeting Collaboration. Returns a plot by default, with an option to return a table with a all of groups (across multiple HR attributes) ranked by hours of digital collaboration.

meeting_rank(
  data,
  hrvar = extract_hr(data),
  mingroup = 5,
  mode = "simple",
  plot_mode = 1,
  return = "plot"
)

Arguments

data

A Standard Person Query dataset in the form of a data frame.

hrvar

String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup

Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

mode

String to specify calculation mode. Must be either:

  • "simple"

  • "combine"

plot_mode

Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when return = "plot".

  • 1: Top and bottom five groups across the data population are highlighted

  • 2: Top and bottom groups per organizational attribute are highlighted

return

String specifying what to return. This must be one of the following strings:

  • "plot" (default)

  • "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return

argument:

  • "plot": 'ggplot' object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output if mode is set to "combine".

  • "table": data frame. A summary table for the metric.

Details

Uses the metric Meeting_hours. See create_rank() for applying the same analysis to a different metric.

See also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Meetings: meeting_dist(), meeting_extract(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_skim(), meeting_summary(), meeting_tm_report(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary()

Examples

# Return rank table
meeting_rank(
  data = sq_data,
  return = "table"
)
#> # A tibble: 30 × 4
#>    hrvar            group                Meeting_hours     n
#>    <chr>            <chr>                        <dbl> <int>
#>  1 FunctionType     Sales                         16.2    82
#>  2 Organization     Inventory Management          13.7    60
#>  3 FunctionType     Marketing                     13.1   207
#>  4 Organization     Human Resources               12.6    71
#>  5 Organization     IT-Corporate                  12.3    68
#>  6 Organization     G&A South                     11.6    76
#>  7 Organization     Finance-East                  11.4    70
#>  8 LevelDesignation Manager                       10.9   333
#>  9 Organization     IT-East                       10.8    62
#> 10 LevelDesignation Executive                     10.6     6
#> # … with 20 more rows

# Return plot
meeting_rank(
  data = sq_data,
  return = "plot"
)