Returns a line chart showing the change in employee count over time. Part of a data validation process to check for unusual license growth / declines over time.

hr_trend(data, return = "plot")

Arguments

data

A Standard Person Query dataset in the form of a data frame.

return

String specifying what to return. This must be one of the following strings:

  • "plot"

  • "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return

argument:

  • "plot": ggplot object. A line plot showing employee count over time.

  • "table": data frame containing a summary table.

See also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_query(), identify_shifts_wp(), identify_shifts(), identify_tenure(), remove_outliers(), standardise_pq(), subject_validate_report(), subject_validate(), track_HR_change(), validation_report()

Examples

# Return plot
hr_trend(dv_data)


# Return summary table
hr_trend(dv_data, return = "table")
#> # A tibble: 13 × 2
#>    Date           n
#>    <date>     <int>
#>  1 2019-11-03    69
#>  2 2019-11-10    69
#>  3 2019-11-17    69
#>  4 2019-11-24    69
#>  5 2019-12-01    69
#>  6 2019-12-08    69
#>  7 2019-12-15    69
#>  8 2019-12-22    69
#>  9 2019-12-29    69
#> 10 2020-01-05    64
#> 11 2020-01-12    64
#> 12 2020-01-19    64
#> 13 2020-01-26    64