Uses the Hourly Collaboration query to produce an area plot of Emails sent and IMs sent attended by hour of the day.

workpatterns_area(
  data,
  hrvar = "Organization",
  mingroup = 5,
  signals = c("email", "IM"),
  return = "plot",
  values = "percent",
  start_hour = "0900",
  end_hour = "1700"
)

Arguments

data

A data frame containing data from the Hourly Collaboration query.

hrvar

HR Variable by which to split metrics. Accepts a character vector, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation"

mingroup

Numeric value setting the privacy threshold / minimum group size, defaults to 5.

signals

Character vector to specify which collaboration metrics to use:

  • a combination of signals, such as c("email", "IM") (default)

  • "email" for emails only

  • "IM" for Teams messages only

  • "unscheduled_calls" for Unscheduled Calls only

  • "meetings" for Meetings only

return

String specifying what to return. This must be one of the following strings:

  • "plot"

  • "table"

See Value for more information.

values

Character vector to specify whether to return percentages or absolute values in "data" and "plot". Valid values are:

  • "percent": percentage of signals divided by total signals (default)

  • "abs": absolute count of signals

start_hour

A character vector specifying starting hours, e.g. "0900"

end_hour

A character vector specifying starting hours, e.g. "1700"

Value

A different output is returned depending on the value passed to the return

argument:

  • "plot": ggplot object. An overlapping area plot (default).

  • "table": data frame. A summary table.

See also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_network_plot(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_rank()

Other Working Patterns: flex_index(), identify_shifts_wp(), identify_shifts(), plot_flex_index(), workpatterns_classify_bw(), workpatterns_classify_pav(), workpatterns_classify(), workpatterns_hclust(), workpatterns_rank(), workpatterns_report()

Other Working Patterns: flex_index(), identify_shifts_wp(), identify_shifts(), plot_flex_index(), workpatterns_classify_bw(), workpatterns_classify_pav(), workpatterns_classify(), workpatterns_hclust(), workpatterns_rank(), workpatterns_report()

Examples


# Create a sample small dataset
orgs <- c("Customer Service", "Financial Planning", "Biz Dev")
em_data <- em_data[em_data$Organization %in% orgs, ]

# Return visualization of percentage distribution
workpatterns_area(em_data, return = "plot", values = "percent")


# Return visualization of absolute values
workpatterns_area(em_data, return = "plot", values = "abs")


# Return summary table
workpatterns_area(em_data, return = "table")
#> # A tibble: 72 × 5
#>    group   Hours Emails_sent IMs_sent     n
#>    <chr>   <dbl>       <dbl>    <dbl> <int>
#>  1 Biz Dev     0      0      0.000223    27
#>  2 Biz Dev     1      0      0.000227    27
#>  3 Biz Dev     2      0      0.000212    27
#>  4 Biz Dev     3      0      0           27
#>  5 Biz Dev     4      0      0           27
#>  6 Biz Dev     5      0      0.000394    27
#>  7 Biz Dev     6      0      0           27
#>  8 Biz Dev     7      0.0238 0.0226      27
#>  9 Biz Dev     8      0.105  0.102       27
#> 10 Biz Dev     9      0.0953 0.0994      27
#> # … with 62 more rows