R/workpatterns_area.R
workpatterns_area.Rd
Uses the Hourly Collaboration query to produce an area plot of Emails sent and IMs sent attended by hour of the day.
workpatterns_area(
data,
hrvar = "Organization",
mingroup = 5,
signals = c("email", "IM"),
return = "plot",
values = "percent",
start_hour = "0900",
end_hour = "1700"
)
A data frame containing data from the Hourly Collaboration query.
HR Variable by which to split metrics. Accepts a character
vector, defaults to "Organization"
but accepts any character vector, e.g.
"LevelDesignation"
Numeric value setting the privacy threshold / minimum group size, defaults to 5.
Character vector to specify which collaboration metrics to use:
a combination of signals, such as c("email", "IM")
(default)
"email"
for emails only
"IM"
for Teams messages only
"unscheduled_calls"
for Unscheduled Calls only
"meetings"
for Meetings only
String specifying what to return. This must be one of the following strings:
"plot"
"table"
See Value
for more information.
Character vector to specify whether to return percentages or absolute values in "data" and "plot". Valid values are:
"percent"
: percentage of signals divided by total signals (default)
"abs"
: absolute count of signals
A character vector specifying starting hours, e.g. "0900"
A character vector specifying starting hours, e.g. "1700"
A different output is returned depending on the value passed to the return
argument:
"plot"
: ggplot object. An overlapping area plot (default).
"table"
: data frame. A summary table.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar_asis()
,
create_bar()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line_asis()
,
create_line()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_dist()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_rank()
Other Working Patterns:
flex_index()
,
identify_shifts_wp()
,
identify_shifts()
,
plot_flex_index()
,
workpatterns_classify_bw()
,
workpatterns_classify_pav()
,
workpatterns_classify()
,
workpatterns_hclust()
,
workpatterns_rank()
,
workpatterns_report()
Other Working Patterns:
flex_index()
,
identify_shifts_wp()
,
identify_shifts()
,
plot_flex_index()
,
workpatterns_classify_bw()
,
workpatterns_classify_pav()
,
workpatterns_classify()
,
workpatterns_hclust()
,
workpatterns_rank()
,
workpatterns_report()
# Create a sample small dataset
orgs <- c("Customer Service", "Financial Planning", "Biz Dev")
em_data <- em_data[em_data$Organization %in% orgs, ]
# Return visualization of percentage distribution
workpatterns_area(em_data, return = "plot", values = "percent")
# Return visualization of absolute values
workpatterns_area(em_data, return = "plot", values = "abs")
# Return summary table
workpatterns_area(em_data, return = "table")
#> # A tibble: 72 × 5
#> group Hours Emails_sent IMs_sent n
#> <chr> <dbl> <dbl> <dbl> <int>
#> 1 Biz Dev 0 0 0.000223 27
#> 2 Biz Dev 1 0 0.000227 27
#> 3 Biz Dev 2 0 0.000212 27
#> 4 Biz Dev 3 0 0 27
#> 5 Biz Dev 4 0 0 27
#> 6 Biz Dev 5 0 0.000394 27
#> 7 Biz Dev 6 0 0 27
#> 8 Biz Dev 7 0.0238 0.0226 27
#> 9 Biz Dev 8 0.105 0.102 27
#> 10 Biz Dev 9 0.0953 0.0994 27
#> # … with 62 more rows