Provides a week by week view of email time, visualised as line charts. By default returns a line chart for email hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.
email_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
A Standard Person Query dataset in the form of a data frame.
String containing the name of the HR Variable by which to split
metrics. Defaults to "Organization"
. To run the analysis on the total
instead of splitting by an HR attribute, supply NULL
(without quotes).
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
String specifying what to return. This must be one of the following strings:
"plot"
"table"
See Value
for more information.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A faceted line plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar_asis()
,
create_bar()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line_asis()
,
create_line()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_dist()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Emails:
email_dist()
,
email_fizz()
,
email_rank()
,
email_summary()
,
email_trend()
# Return a line plot
email_line(sq_data, hrvar = "LevelDesignation")
# Return summary table
email_line(sq_data, hrvar = "LevelDesignation", return = "table")
#> # A tibble: 6 × 14
#> group 2019-…¹ 2019-…² 2019-…³ 2019-…⁴ 2019-…⁵ 2019-…⁶ 2019-…⁷ 2019-…⁸ 2019-…⁹
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Direc… 10.8 11.3 9.39 10.2 5.62 9.43 9.76 9.63 9.32
#> 2 Execu… 8.95 10.2 8.26 7.00 3.94 9.67 9.74 8.61 8.75
#> 3 Junio… 11.4 11.1 10.3 9.59 6.44 8.80 9.78 10.1 9.45
#> 4 Manag… 12.3 11.8 10.9 10.6 6.51 10.0 11.0 10.8 10.1
#> 5 Senio… 11.5 11.1 10.1 9.80 6.30 9.03 10.2 10.3 9.18
#> 6 Suppo… 10.6 10.2 9.44 9.33 5.77 9.07 9.46 9.48 9.04
#> # … with 4 more variables: `2020-01-05` <dbl>, `2020-01-12` <dbl>,
#> # `2020-01-19` <dbl>, `2020-01-26` <dbl>, and abbreviated variable names
#> # ¹`2019-11-03`, ²`2019-11-10`, ³`2019-11-17`, ⁴`2019-11-24`, ⁵`2019-12-01`,
#> # ⁶`2019-12-08`, ⁷`2019-12-15`, ⁸`2019-12-22`, ⁹`2019-12-29`