Analyze Email Hours distribution. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.

email_dist(
  data,
  hrvar = "Organization",
  mingroup = 5,
  return = "plot",
  cut = c(5, 10, 15)
)

Arguments

data

A Standard Person Query dataset in the form of a data frame.

hrvar

String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup

Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return

String specifying what to return. This must be one of the following strings:

  • "plot"

  • "table"

See Value for more information.

cut

A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)

Value

A different output is returned depending on the value passed to the return argument:

  • "plot": 'ggplot' object. A stacked bar plot for the metric.

  • "table": data frame. A summary table for the metric.

Examples

# Return plot
email_dist(sq_data, hrvar = "Organization")


# Return summary table
email_dist(sq_data, hrvar = "Organization", return = "table")
#> # A tibble: 15 × 6
#>    group                `< 5 hours` `5 - 10 hours` 10 - 15 hou…¹ 15+ h…² Emplo…³
#>    <fct>                      <dbl>          <dbl>         <dbl>   <dbl>   <int>
#>  1 Biz Dev                   0.0133          0.96         0.0267 NA           75
#>  2 Customer Service          0.0164          0.656        0.295   0.0328      61
#>  3 Facilities               NA               0.625        0.375  NA           72
#>  4 Finance-Corporate         0.0147          0.779        0.206  NA           68
#>  5 Finance-East              0.0429          0.329        0.586   0.0429      70
#>  6 Finance-South             0.0370          0.593        0.321   0.0494      81
#>  7 Finance-West             NA               0.521        0.425   0.0548      73
#>  8 Financial Planning       NA               0.84         0.133   0.0267      75
#>  9 G&A Central              NA               0.614        0.368   0.0175      57
#> 10 G&A East                 NA               0.846        0.154  NA           65
#> 11 G&A South                 0.0132          0.25         0.605   0.132       76
#> 12 Human Resources          NA               0.197        0.690   0.113       71
#> 13 IT-Corporate              0.0147          0.338        0.5     0.147       68
#> 14 IT-East                  NA               0.452        0.532   0.0161      62
#> 15 Inventory Management     NA               0.15         0.633   0.217       60
#> # … with abbreviated variable names ¹​`10 - 15 hours`, ²​`15+ hours`,
#> #   ³​Employee_Count

# Return result with a custom specified breaks
email_dist(sq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))