Analyze Email Hours distribution. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.
email_dist(
data,
hrvar = "Organization",
mingroup = 5,
return = "plot",
cut = c(5, 10, 15)
)
A Standard Person Query dataset in the form of a data frame.
String containing the name of the HR Variable by which to split
metrics. Defaults to "Organization"
. To run the analysis on the total
instead of splitting by an HR attribute, supply NULL
(without quotes).
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
String specifying what to return. This must be one of the following strings:
"plot"
"table"
See Value
for more information.
A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A stacked bar plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar_asis()
,
create_bar()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line_asis()
,
create_line()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_dist()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Emails:
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
# Return plot
email_dist(sq_data, hrvar = "Organization")
# Return summary table
email_dist(sq_data, hrvar = "Organization", return = "table")
#> # A tibble: 15 × 6
#> group `< 5 hours` `5 - 10 hours` 10 - 15 hou…¹ 15+ h…² Emplo…³
#> <fct> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 Biz Dev 0.0133 0.96 0.0267 NA 75
#> 2 Customer Service 0.0164 0.656 0.295 0.0328 61
#> 3 Facilities NA 0.625 0.375 NA 72
#> 4 Finance-Corporate 0.0147 0.779 0.206 NA 68
#> 5 Finance-East 0.0429 0.329 0.586 0.0429 70
#> 6 Finance-South 0.0370 0.593 0.321 0.0494 81
#> 7 Finance-West NA 0.521 0.425 0.0548 73
#> 8 Financial Planning NA 0.84 0.133 0.0267 75
#> 9 G&A Central NA 0.614 0.368 0.0175 57
#> 10 G&A East NA 0.846 0.154 NA 65
#> 11 G&A South 0.0132 0.25 0.605 0.132 76
#> 12 Human Resources NA 0.197 0.690 0.113 71
#> 13 IT-Corporate 0.0147 0.338 0.5 0.147 68
#> 14 IT-East NA 0.452 0.532 0.0161 62
#> 15 Inventory Management NA 0.15 0.633 0.217 60
#> # … with abbreviated variable names ¹`10 - 15 hours`, ²`15+ hours`,
#> # ³Employee_Count
# Return result with a custom specified breaks
email_dist(sq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))