Analyze degree of attendance between employes and their managers. Returns a stacked bar plot of different buckets of coattendance. Additional options available to return a table with distribution elements.
mgrcoatt_dist(data, hrvar = "Organization", mingroup = 5, return = "plot")
A Standard Person Query dataset in the form of a data frame.
String containing the name of the HR Variable by which to split
metrics. Defaults to "Organization"
. To run the analysis on the total
instead of splitting by an HR attribute, supply NULL
(without quotes).
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
String specifying what to return. This must be one of the following strings:
"plot"
"table"
See Value
for more information.
A different output is returned depending on the value passed to the return
argument:
"plot"
: ggplot object. A stacked bar plot showing the distribution of
manager co-attendance time.
"table"
: data frame. A summary table for manager co-attendance time.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar_asis()
,
create_bar()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line_asis()
,
create_line()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_dist()
,
meetingtype_summary()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Managerial Relations:
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
# Return plot
mgrcoatt_dist(sq_data, hrvar = "Organization", return = "plot")
# Return summary table
mgrcoatt_dist(sq_data, hrvar = "Organization", return = "table")
#> # A tibble: 15 × 5
#> group `0 - 25%` `25 - 50%` `50 - 75%` `75% +`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Biz Dev 0.213 0.04 0.533 0.213
#> 2 Customer Service 0.180 NA 0.459 0.361
#> 3 Facilities 0.194 NA 0.472 0.333
#> 4 Finance-Corporate 0.191 NA 0.559 0.25
#> 5 Finance-East 0.243 0.0143 0.3 0.443
#> 6 Finance-South 0.210 NA 0.407 0.383
#> 7 Finance-West 0.233 NA 0.438 0.329
#> 8 Financial Planning 0.187 0.0267 0.467 0.32
#> 9 G&A Central 0.158 0.0351 0.439 0.368
#> 10 G&A East 0.246 NA 0.569 0.185
#> 11 G&A South 0.197 0.421 0.105 0.276
#> 12 Human Resources 0.197 0.408 0.127 0.268
#> 13 IT-Corporate 0.191 0.426 0.221 0.162
#> 14 IT-East 0.226 0.387 0.0968 0.290
#> 15 Inventory Management 0.233 0.4 0.183 0.183