R/workloads_rank.R
    workloads_rank.RdThis function scans a standard query output for groups with high levels of Work Week Span. Returns a plot by default, with an option to return a table with a all of groups (across multiple HR attributes) ranked by work week span.
workloads_rank(
  data,
  hrvar = extract_hr(data),
  mingroup = 5,
  mode = "simple",
  plot_mode = 1,
  return = "table"
)A Standard Person Query dataset in the form of a data frame.
String containing the name of the HR Variable by which to split
metrics. Defaults to "Organization". To run the analysis on the total
instead of splitting by an HR attribute, supply NULL (without quotes).
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
String to specify calculation mode. Must be either:
"simple"
"combine"
Numeric vector to determine which plot mode to return. Must
be either 1 or 2, and is only used when return = "plot".
1: Top and bottom five groups across the data population are highlighted
2: Top and bottom groups per organizational attribute are highlighted
String specifying what to return. This must be one of the following strings:
"plot" (default)
"table"
See Value for more information.
A different output is returned depending on the value passed to the return
argument:
"plot": 'ggplot' object. A bubble plot where the x-axis represents the
metric, the y-axis represents the HR attributes, and the size of the
bubbles represent the size of the organizations. Note that there is no
plot output if mode is set to "combine".
"table": data frame. A summary table for the metric.
Uses the metric Workweek_span.
See create_rank() for applying the same analysis to a different metric.
Other Visualization:
afterhours_dist(),
afterhours_fizz(),
afterhours_line(),
afterhours_rank(),
afterhours_summary(),
afterhours_trend(),
collaboration_area(),
collaboration_dist(),
collaboration_fizz(),
collaboration_line(),
collaboration_rank(),
collaboration_sum(),
collaboration_trend(),
create_bar(),
create_bar_asis(),
create_boxplot(),
create_bubble(),
create_dist(),
create_fizz(),
create_inc(),
create_line(),
create_line_asis(),
create_period_scatter(),
create_rank(),
create_sankey(),
create_scatter(),
create_stacked(),
create_tracking(),
create_trend(),
email_dist(),
email_fizz(),
email_line(),
email_rank(),
email_summary(),
email_trend(),
external_dist(),
external_fizz(),
external_line(),
external_network_plot(),
external_rank(),
external_sum(),
hr_trend(),
hrvar_count(),
hrvar_trend(),
internal_network_plot(),
keymetrics_scan(),
meeting_dist(),
meeting_fizz(),
meeting_line(),
meeting_quality(),
meeting_rank(),
meeting_summary(),
meeting_trend(),
meetingtype_dist(),
meetingtype_dist_ca(),
meetingtype_dist_mt(),
meetingtype_summary(),
mgrcoatt_dist(),
mgrrel_matrix(),
one2one_dist(),
one2one_fizz(),
one2one_freq(),
one2one_line(),
one2one_rank(),
one2one_sum(),
one2one_trend(),
period_change(),
workloads_dist(),
workloads_fizz(),
workloads_line(),
workloads_summary(),
workloads_trend(),
workpatterns_area(),
workpatterns_rank()
Other Workweek Span:
workloads_dist(),
workloads_fizz(),
workloads_line(),
workloads_summary(),
workloads_trend()
# Return rank table
workloads_rank(
  data = sq_data,
  return = "table"
)
#> # A tibble: 18 × 4
#>    hrvar            group              Workweek_span     n
#>    <chr>            <chr>                      <dbl> <int>
#>  1 FunctionType     Sales                       52.4    66
#>  2 FunctionType     Marketing                   52.1   125
#>  3 LevelDesignation Manager                     44.1   200
#>  4 Organization     Human Resources             44.0    71
#>  5 LevelDesignation Senior IC                   43.9    67
#>  6 Organization     Finance                     43.6   292
#>  7 LevelDesignation Director                    42.8    43
#>  8 LevelDesignation Junior IC                   42.5    58
#>  9 Organization     IT                          41.8   130
#> 10 Organization     Customer Service            41.6    61
#> 11 LevelDesignation Support                     41.3   257
#> 12 FunctionType     Engineering                 41.1    49
#> 13 Organization     Financial Planning          40.1    75
#> 14 FunctionType     Operations                  39.8   115
#> 15 FunctionType     R_and_D                     38.1    74
#> 16 FunctionType     IT                          37.4    22
#> 17 FunctionType     Finance                     37.4    74
#> 18 FunctionType     G_and_A                     37.2   104
# Return plot
workloads_rank(
  data = sq_data,
  return = "plot"
)
