R/workloads_rank.R
workloads_rank.Rd
This function scans a standard query output for groups with high levels of Work Week Span. Returns a plot by default, with an option to return a table with a all of groups (across multiple HR attributes) ranked by work week span.
workloads_rank(
data,
hrvar = extract_hr(data),
mingroup = 5,
mode = "simple",
plot_mode = 1,
return = "table"
)
A Standard Person Query dataset in the form of a data frame.
String containing the name of the HR Variable by which to split
metrics. Defaults to "Organization"
. To run the analysis on the total
instead of splitting by an HR attribute, supply NULL
(without quotes).
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
String to specify calculation mode. Must be either:
"simple"
"combine"
Numeric vector to determine which plot mode to return. Must
be either 1
or 2
, and is only used when return = "plot"
.
1
: Top and bottom five groups across the data population are highlighted
2
: Top and bottom groups per organizational attribute are highlighted
String specifying what to return. This must be one of the following strings:
"plot"
(default)
"table"
See Value
for more information.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A bubble plot where the x-axis represents the
metric, the y-axis represents the HR attributes, and the size of the
bubbles represent the size of the organizations. Note that there is no
plot output if mode
is set to "combine"
.
"table"
: data frame. A summary table for the metric.
Uses the metric Workweek_span
.
See create_rank()
for applying the same analysis to a different metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Workweek Span:
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_summary()
,
workloads_trend()
# Return rank table
workloads_rank(
data = sq_data,
return = "table"
)
#> # A tibble: 18 × 4
#> hrvar group Workweek_span n
#> <chr> <chr> <dbl> <int>
#> 1 FunctionType Sales 52.4 66
#> 2 FunctionType Marketing 52.1 125
#> 3 LevelDesignation Manager 44.1 200
#> 4 Organization Human Resources 44.0 71
#> 5 LevelDesignation Senior IC 43.9 67
#> 6 Organization Finance 43.6 292
#> 7 LevelDesignation Director 42.8 43
#> 8 LevelDesignation Junior IC 42.5 58
#> 9 Organization IT 41.8 130
#> 10 Organization Customer Service 41.6 61
#> 11 LevelDesignation Support 41.3 257
#> 12 FunctionType Engineering 41.1 49
#> 13 Organization Financial Planning 40.1 75
#> 14 FunctionType Operations 39.8 115
#> 15 FunctionType R_and_D 38.1 74
#> 16 FunctionType IT 37.4 22
#> 17 FunctionType Finance 37.4 74
#> 18 FunctionType G_and_A 37.2 104
# Return plot
workloads_rank(
data = sq_data,
return = "plot"
)