This page was generated from docs/examples/DataSet/DataSet-class-walkthrough.ipynb. Interactive online version: Binder badge.

DataSet class walkthrough

In this notebook we are going to go through the mighty DataSet class, and get an overview of the most of it’s methods and properties. In this case, the more you know, the more you can achieve.

Note on DataSet object creation

Users are expected to obtain DataSet objects in the following ways:

  • run a Measurement and get a DataSet via a DataSaver after exiting the measurement context, as shown here:

...
meas = Measurement(...)
...
with meas.run() as datasaver:
    ...
dataset = datasaver.dataset  # <- this one
...
  • load a DataSet using one of the load_* functions from qcodes.dataset.data_set module, for example, load_by_run_spec:

dataset = load_by_run_spec(
    experiment_name='pinchoff',
    sample_name='SDH-X-13c',
    captured_run_id=12
)

Users should NOT instantiate a DataSet object via its constructor, or via the new_data_set function.

Preparation: a DataSet from a dummy Measurement

In order to obtain a DataSet object, we are going to run a Measurement storing some dummy data (see notebook on Performing measurements using qcodes parameters and dataset for more details).

[1]:
import os
import tempfile
import time

import numpy as np

from qcodes.dataset import (
    Measurement,
    initialise_or_create_database_at,
    load_or_create_experiment,
    plot_dataset,
)
from qcodes.parameters import Parameter
from qcodes.station import Station
Logging hadn't been started.
Activating auto-logging. Current session state plus future input saved.
Filename       : /home/runner/.qcodes/logs/command_history.log
Mode           : append
Output logging : True
Raw input log  : False
Timestamping   : True
State          : active
Qcodes Logfile : /home/runner/.qcodes/logs/241218-7894-qcodes.log
[2]:
db_path = os.path.join(tempfile.gettempdir(), "data_access_example.db")
initialise_or_create_database_at(db_path)

experiment = load_or_create_experiment(experiment_name="greco", sample_name="draco")
[3]:
# This parameter is created in order to
# justify creation of a `Station` object,
# which, in turn, is needed to remind the
# reader about the importance of adding
# all instruments to the station.
fs = Parameter(
    name="force_side",
    label="Side of the Force",
    initial_value="dark",
    set_cmd=None,
    get_cmd=None,
)
[4]:
station = Station()
station.add_component(fs)
[4]:
'force_side'
[5]:
x = Parameter(name="x", label="Voltage", unit="V", set_cmd=None, get_cmd=None)
t = Parameter(name="t", label="Time", unit="s", set_cmd=None, get_cmd=None)
y = Parameter(name="y", label="Voltage", unit="V", set_cmd=None, get_cmd=None)
y2 = Parameter(name="y2", label="Current", unit="A", set_cmd=None, get_cmd=None)
[6]:
meas = Measurement(exp=experiment, name="first_run", station=station)

meas.register_parameter(x)
meas.register_parameter(t)
meas.register_parameter(y, setpoints=(x, t))
meas.register_parameter(y2, setpoints=(x, t))

x_vals = np.linspace(-4, 5, 50)
t_vals = np.linspace(-500, 1500, 25)

with meas.run() as datasaver:
    for xv in x_vals:
        for tv in t_vals:
            yv = np.sin(2 * np.pi * xv) * np.cos(2 * np.pi * 0.001 * tv) + 0.001 * tv
            y2v = (
                np.sin(2 * np.pi * xv) * np.cos(2 * np.pi * 0.001 * tv + 0.5 * np.pi)
                - 0.001 * tv
            )
            datasaver.add_result((x, xv), (t, tv), (y, yv), (y2, y2v))
    time.sleep(1.0)

dataset = datasaver.dataset
Starting experimental run with id: 1.

For the sake of demonstrating what kind of data we’ve produced, let’s use plot_dataset to make some default plots of the data.

[7]:
plot_dataset(dataset)
[7]:
([<Axes: title={'center': 'Run #1, Experiment greco (draco)'}, xlabel='Voltage (V)', ylabel='Time (ks)'>,
  <Axes: title={'center': 'Run #1, Experiment greco (draco)'}, xlabel='Voltage (V)', ylabel='Time (ks)'>],
 [<matplotlib.colorbar.Colorbar at 0x7f8cf66ccdd0>,
  <matplotlib.colorbar.Colorbar at 0x7f8cf6489510>])
../../_images/examples_DataSet_DataSet-class-walkthrough_10_1.png
../../_images/examples_DataSet_DataSet-class-walkthrough_10_2.png

Note on immutability of DataSet

Users are NOT expected to use DataSets methods that modify its content, for example, add_result. Only Measurement and DataSaver objects use those methods. This is due to the philosophy of the DataSet - once created within a Measurement context, it should not change so that the user don’t accidentally modify/remove the important measured data. In the future versions of QCoDeS the design of the DataSet object will be improved to make the described philosophy clear.

DataSet indentity

Before we dive into what’s in the DataSet, let’s briefly note how a DataSet is identified.

TL;DR: > * Both experiment name and sample name are great means for identifying a dataset, especially when coupled with the captured_run_id. > * guid is the only globally unique identifier for datasets.

GUID

Globally, “in this universe”, a dataset is identified by a globally unique identifier:

[8]:
dataset.guid
[8]:
'5bca4de6-0000-0000-0000-0193d8958423'

guid is generated when a dataset is created, and is globally unique.

Due to the nature of the guid and its size, it is very user-friendly. For example, it is convenient to use it as a reference in a conversation between users. However, the guid is crucial for use in automated/computer systems, for example, when moving a dataset from one database file to a different one.

Captured run ID

Within a given single database file (!) a dataset can be identified by its captured_run_id, an integer index:

[9]:
dataset.captured_run_id
[9]:
1

captured_run_id gets assigned to a DataSet at its creation time such that the new captured_run_id is always one larger than the current number of DataSets in the database file:

captured_run_id_for_new_dataset = 1 + current_total_number_of_datasets_in_the_database

Note that captured_run_id is preserved when exporting the DataSet to another database file but may not be unique if combined with datasets from other database files. For example, it is possible to export 2 datasets with the same captured_run_id to the same database file.

We will see below how to disambiguate multiple datasets that share the same captured_run_id.

Note on run ID

DataSet object also has a run_id, also an integer index:

[10]:
dataset.run_id
[10]:
1

run_id also gets assigned to a dataset upon its creation, and due to its implementation is unique only within that database file. Unlike captured_run_id, run_id is NOT preserved when exporting a dataset from one database file to another, hence it is NOT recommended for any use.

Experiment and sample names

Every dataset contains the name of the experiment, and the name of the sample - those come from the Experiment object that was passed to the Measurement object with which the dataset has been created.

So here is the experiment name that has been used above:

[11]:
dataset.exp_name
[11]:
'greco'

And here is the sample name that has been used above:

[12]:
dataset.sample_name
[12]:
'draco'

Both experiment name and sample name are great means for identifying a dataset, especially when coupled with the captured_run_id.

DataSet name

Last but not least, a dataset may have a name. This name gets assigned to the dataset upon its creation, and is taken from the name attribute of the Measurement object that was used to create the dataset. For example, above the name of the Measurement was set by passing it as an argument to its constructor, hence the produced DataSet also has this name:

[13]:
dataset.name
[13]:
'first_run'

If the name of the Measurement is not explicitly defined, the created dataset gets a default name.

Note on experiments

Conceptually experiments are meant to group datasets under the same experiment name and sample name. This is why every dataset also contains the following Experiment-related identifications.

Experiments have integer ids within a database file. A dataset knows about the id of the experiment it belongs to via exp_id property:

[14]:
dataset.exp_id
[14]:
1

Because an Experiment is a group of datasets, every dataset also has a captured_counter within an Experiment:

[15]:
dataset.captured_counter
[15]:
1

Similar to captured_run_id, captured_counter gets assigned to a DataSet upon its creation, and is preserved when exporting a dataset to another database file. The formula for captured_counter is:

captured_counter_for_new_dataset = 1 + current_total_number_of_datasets_within_the_given_experiment_in_the_database

Note on counter

Upon creation, a DataSet also gets a counter index within an Experiment:

[16]:
dataset.counter
[16]:
1

However, similar to run_id, counter is NOT preserved when exporting a dataset to a different database file, hence it is NOT recommended for any use.

DataSet info

In this section we are going to look at different minor pieces of information about the dataset.

Database file

Dataset is obviously aware of which database file it is contained in:

[17]:
dataset.path_to_db
[17]:
'/tmp/data_access_example.db'

Timestamps

A dataset has two associated timestamps: run_timestamp of the moment when it has been started (say, when the measurement was started), and completed_timestamp of the moment when it has been completed (say, when the measurement was finished). Both of the timestamps are available as *_raw properties of the DataSet, and as convenience methods of DataSet which allow formatting of the raw timestamps.

[18]:
dataset.run_timestamp_raw
[18]:
1734505497.6438634
[19]:
dataset.run_timestamp()
[19]:
'2024-12-18 07:04:57'
[20]:
dataset.completed_timestamp_raw
[20]:
1734505498.7836893
[21]:
dataset.completed_timestamp()
[21]:
'2024-12-18 07:04:58'

Snapshot

The snapshot of the Station at the moment the measurement started is stored in the DataSet, and is available via snapshot property that returns the snapshot as a Python dictionary:

[22]:
dataset.snapshot
[22]:
{'station': {'instruments': {},
  'parameters': {'force_side': {'__class__': 'qcodes.parameters.parameter.Parameter',
    'full_name': 'force_side',
    'value': 'dark',
    'raw_value': 'dark',
    'ts': '2024-12-18 07:04:57',
    'validators': [],
    'label': 'Side of the Force',
    'name': 'force_side',
    'unit': '',
    'post_delay': 0,
    'inter_delay': 0}},
  'components': {},
  'config': None},
 'parameters': {'x': {'__class__': 'qcodes.parameters.parameter.Parameter',
   'full_name': 'x',
   'value': None,
   'raw_value': None,
   'ts': None,
   'validators': [],
   'label': 'Voltage',
   'name': 'x',
   'unit': 'V',
   'post_delay': 0,
   'inter_delay': 0},
  't': {'__class__': 'qcodes.parameters.parameter.Parameter',
   'full_name': 't',
   'value': None,
   'raw_value': None,
   'ts': None,
   'validators': [],
   'label': 'Time',
   'name': 't',
   'unit': 's',
   'post_delay': 0,
   'inter_delay': 0},
  'y': {'__class__': 'qcodes.parameters.parameter.Parameter',
   'full_name': 'y',
   'value': None,
   'raw_value': None,
   'ts': None,
   'validators': [],
   'label': 'Voltage',
   'name': 'y',
   'unit': 'V',
   'post_delay': 0,
   'inter_delay': 0},
  'y2': {'__class__': 'qcodes.parameters.parameter.Parameter',
   'full_name': 'y2',
   'value': None,
   'raw_value': None,
   'ts': None,
   'validators': [],
   'label': 'Current',
   'name': 'y2',
   'unit': 'A',
   'post_delay': 0,
   'inter_delay': 0}}}

If needed, snapshot_raw property of the DataSet can be used to retrieve the snapshot in the way it is persisted - it’s a JSON-formatted string:

[23]:
dataset.snapshot_raw
[23]:
'{"station": {"instruments": {}, "parameters": {"force_side": {"__class__": "qcodes.parameters.parameter.Parameter", "full_name": "force_side", "value": "dark", "raw_value": "dark", "ts": "2024-12-18 07:04:57", "validators": [], "label": "Side of the Force", "name": "force_side", "unit": "", "post_delay": 0, "inter_delay": 0}}, "components": {}, "config": null}, "parameters": {"x": {"__class__": "qcodes.parameters.parameter.Parameter", "full_name": "x", "value": null, "raw_value": null, "ts": null, "validators": [], "label": "Voltage", "name": "x", "unit": "V", "post_delay": 0, "inter_delay": 0}, "t": {"__class__": "qcodes.parameters.parameter.Parameter", "full_name": "t", "value": null, "raw_value": null, "ts": null, "validators": [], "label": "Time", "name": "t", "unit": "s", "post_delay": 0, "inter_delay": 0}, "y": {"__class__": "qcodes.parameters.parameter.Parameter", "full_name": "y", "value": null, "raw_value": null, "ts": null, "validators": [], "label": "Voltage", "name": "y", "unit": "V", "post_delay": 0, "inter_delay": 0}, "y2": {"__class__": "qcodes.parameters.parameter.Parameter", "full_name": "y2", "value": null, "raw_value": null, "ts": null, "validators": [], "label": "Current", "name": "y2", "unit": "A", "post_delay": 0, "inter_delay": 0}}}'

Note on DataSet states

The DataSet object publicly exposes properties which give information about its state. However, users are expected to always get DataSet objects in their “final”, last, unmodifiable state. This means that the “state” properties of the dataset will have the following values:

[25]:
dataset.completed
[25]:
True
[26]:
dataset.started
[26]:
True
[27]:
dataset.running
[27]:
False
[28]:
dataset.pristine
[28]:
False

Note on metadata

DataSet object also supports storing arbitrary “metadata” inside it, however, this feature is not complete and may be flaky and buggy at the moment. Yet, for completeness of this article we still mention the metadata property of the DataSet:

[29]:
dataset.metadata
[29]:
{}

Parameters in DataSet

In this section we are getting information about the parameters stored in the given DataSet.

Interdependencies

DataSet object has a description property that returns a RunDescriber object. The RunDescriber object in turn contains information about the parameters under its interdeps attribute:

[30]:
interdeps = dataset.description.interdeps
interdeps
[30]:
InterDependencies_(dependencies={ParamSpecBase('y', 'numeric', 'Voltage', 'V'): (ParamSpecBase('x', 'numeric', 'Voltage', 'V'), ParamSpecBase('t', 'numeric', 'Time', 's')), ParamSpecBase('y2', 'numeric', 'Current', 'A'): (ParamSpecBase('x', 'numeric', 'Voltage', 'V'), ParamSpecBase('t', 'numeric', 'Time', 's'))}, inferences={}, standalones=frozenset())

This is InterDependencies_ object, it stores information about every parameter in the form of ParamSpecBase objects, and the releationship between parameters via dependencies, inferences, and standalones attributes.

For example, the dataset that we are inspecting contains no inferences, and no standalone parameters, but it contains two dependent parameters y and y2, which both depend on independent x and t parameters:

[31]:
interdeps.inferences
[31]:
{}
[32]:
interdeps.standalones
[32]:
frozenset()
[33]:
interdeps.dependencies
[33]:
{ParamSpecBase('y', 'numeric', 'Voltage', 'V'): (ParamSpecBase('x', 'numeric', 'Voltage', 'V'),
  ParamSpecBase('t', 'numeric', 'Time', 's')),
 ParamSpecBase('y2', 'numeric', 'Current', 'A'): (ParamSpecBase('x', 'numeric', 'Voltage', 'V'),
  ParamSpecBase('t', 'numeric', 'Time', 's'))}
[34]:
ps = next(iter(interdeps.dependencies.keys()))

print(f"Parameter {ps} depends on:")

for p in interdeps.dependencies[ps]:
    print(f"- {p}")
Parameter ParamSpecBase('y', 'numeric', 'Voltage', 'V') depends on:
- ParamSpecBase('x', 'numeric', 'Voltage', 'V')
- ParamSpecBase('t', 'numeric', 'Time', 's')

Note that ParamSpecBase objects contain all the necessary information about a parameter, including its name and unit:

[35]:
ps = next(iter(interdeps.dependencies.keys()))
print(f"Parameter {ps.name!r} is in {ps.unit!r}")
Parameter 'y' is in 'V'

More information on how to work with this object is provided in a separate example notebook, Accessing data in DataSet.

Shortcuts to important parameters

For the frequently needed groups of parameters, DataSet object itself provides convenient methods.

For example, use dependent_parameters property to get a only dependent parameters of a given DataSet:

[36]:
dataset.dependent_parameters
[36]:
(ParamSpecBase('y', 'numeric', 'Voltage', 'V'),
 ParamSpecBase('y2', 'numeric', 'Current', 'A'))

Note on ParamSpec’s

ParamSpecs originate from QCoDeS versions prior to 0.2.0 and for now are kept for backwards compatibility. ParamSpecs are completely superseded by InterDependencies_/ParamSpecBase bundle and will likely be deprecated in future versions of QCoDeS together with the DataSet methods/properties that return ParamSpecs objects.

In addition to the Interdependencies_ object, DataSet also holds ParamSpec objects (not to be confused with ParamSpecBase objects from above). Similar to Interdependencies_ object, the ParamSpec objects hold information about parameters and their interdependencies but in a different way: for a given parameter, ParamSpec object itself contains information on names of parameters that it depends on, while for the InterDependencies_/ParamSpecBases this information is stored only in the InterDependencies_ object.

DataSet exposes paramspecs property and get_parameters() method, both of which return ParamSpec objects of all the parameters of the dataset, and are not recommended for use:

[37]:
dataset.paramspecs
[37]:
{'x': ParamSpec('x', 'numeric', 'Voltage', 'V', inferred_from=[], depends_on=[]),
 't': ParamSpec('t', 'numeric', 'Time', 's', inferred_from=[], depends_on=[]),
 'y': ParamSpec('y', 'numeric', 'Voltage', 'V', inferred_from=[], depends_on=['x', 't']),
 'y2': ParamSpec('y2', 'numeric', 'Current', 'A', inferred_from=[], depends_on=['x', 't'])}
[38]:
dataset.get_parameters()
[38]:
[ParamSpec('x', 'numeric', 'Voltage', 'V', inferred_from=[], depends_on=[]),
 ParamSpec('t', 'numeric', 'Time', 's', inferred_from=[], depends_on=[]),
 ParamSpec('y', 'numeric', 'Voltage', 'V', inferred_from=[], depends_on=['x', 't']),
 ParamSpec('y2', 'numeric', 'Current', 'A', inferred_from=[], depends_on=['x', 't'])]

Lastly, DataSet has parameters that returns a string with comma-separated names of all the dataset parameters (will likely be deprecated soon):

[39]:
dataset.parameters
[39]:
'x,t,y,y2'

Data access in DataSet

DataSet provides one main method of accessing data - get_parameter_data. It returns data for groups of dependent-parameter-and-its-independent-parameters in a form of a nested dictionary of numpy arrays:

[40]:
dataset.get_parameter_data()
[40]:
{'y': {'y': array([-0.5       , -0.41666667, -0.33333333, ...,  1.33333333,
          1.41666667,  1.5       ], shape=(1250,)),
  'x': array([-4., -4., -4., ...,  5.,  5.,  5.], shape=(1250,)),
  't': array([-500.        , -416.66666667, -333.33333333, ..., 1333.33333333,
         1416.66666667, 1500.        ], shape=(1250,))},
 'y2': {'y2': array([ 0.5       ,  0.41666667,  0.33333333, ..., -1.33333333,
         -1.41666667, -1.5       ], shape=(1250,)),
  'x': array([-4., -4., -4., ...,  5.,  5.,  5.], shape=(1250,)),
  't': array([-500.        , -416.66666667, -333.33333333, ..., 1333.33333333,
         1416.66666667, 1500.        ], shape=(1250,))}}

Additionally, DataSet provides the following convenient methods:

More information on how to access data in a dataset is provided in a separate example notebook, Accessing data in DataSet and Exporting QCoDes Datasets contains more information about how to export datasets to other file formats.

Note that get_parameter_data reads the data from the database at each call. If you need to re read data from the database either from a separate process while writing the data or after the data acquisition consider using the dataset cache

What about the rest?

An interested user might discover other methods and properties of the DataSet class that are not mentioned here. Those methods and properties are likely to be made private or deprecated in future QCoDeS releases… or be documented and presented for use :)