This page was generated from docs/examples/DataSet/Threaded data acquisition.ipynb. Interactive online version: Binder badge.

Threaded data acquisition

In this notebook, we will explore how threading can be used with measurement context manager or dond functions for faster data acquisition. It is important to note that, the threading QCoDeS provideds happens per instrument. Meaning, per instrument one thread is created and all parameters from same instrument gets assigned to the same thread for data acquizition. It is generally not safe for more than one thread to communicate with the same instrument at the same time.

Let us begin with some necessary imports.

[1]:
%matplotlib inline

import time
from pathlib import Path

import numpy as np

from qcodes.dataset import (
    Measurement,
    ThreadPoolParamsCaller,
    do1d,
    initialise_or_create_database_at,
    load_or_create_experiment,
    plot_dataset,
)
from qcodes.instrument_drivers.mock_instruments import (
    DummyInstrument,
    DummyInstrumentWithMeasurement,
)
from qcodes.parameters import Parameter
from qcodes.validators import Numbers
Logging hadn't been started.
Activating auto-logging. Current session state plus future input saved.
Filename       : /home/runner/.qcodes/logs/command_history.log
Mode           : append
Output logging : True
Raw input log  : False
Timestamping   : True
State          : active
Qcodes Logfile : /home/runner/.qcodes/logs/240918-18207-qcodes.log

Now, setup some instruments!

[2]:
dac = DummyInstrument("dac", gates=["ch1", "ch2"])
dmm1 = DummyInstrumentWithMeasurement(name="dmm1", setter_instr=dac)
dmm2 = DummyInstrumentWithMeasurement(name="dmm2", setter_instr=dac)
[3]:
class SleepyDmmExponentialParameter(Parameter):
    def __init__(self, name, **kwargs):
        super().__init__(name, **kwargs)
        self._ed = self._exponential_decay(5, 0.2)
        next(self._ed)

    def get_raw(self):
        dac = self.root_instrument._setter_instr
        val = self._ed.send(dac.ch1())
        next(self._ed)
        time.sleep(0.1)
        return val

    @staticmethod
    def _exponential_decay(a: float, b: float):
        x = 0
        while True:
            x = yield
            yield a * np.exp(-b * x) + 0.02 * a * np.random.randn()

The above parameter class is made to return data with a delay on purpose with help of time.sleep(0.1) statement in the get_raw method to simulate slow communication with actual instruments.

[4]:
dmm1.add_parameter(
    "v3",
    parameter_class=SleepyDmmExponentialParameter,
    initial_value=0,
    label="Gate v3",
    unit="V",
    vals=Numbers(-800, 400),
    get_cmd=None,
    set_cmd=None,
)
[4]:
<__main__.SleepyDmmExponentialParameter: v3 at 140705942833360>
[5]:
dmm2.add_parameter(
    "v3",
    parameter_class=SleepyDmmExponentialParameter,
    initial_value=0,
    label="Gate v3",
    unit="V",
    vals=Numbers(-800, 400),
    get_cmd=None,
    set_cmd=None,
)
[5]:
<__main__.SleepyDmmExponentialParameter: v3 at 140705941085456>

Initialize the database and load or create an experiment.

[6]:
initialise_or_create_database_at(
    Path.cwd() / "data_acquisition_with_and_without_threads.db"
)
exp = load_or_create_experiment(
    experiment_name="data_acquisition_with_and_without_threads", sample_name="no sample"
)

Measurement 1: Non threaded data acquisition

In the following measurment, we do not use threads and note down the time taken for the data acquisition.

[7]:
meas1 = Measurement(exp=exp, name="exponential_decay_non_threaded_data_acquisition")
meas1.register_parameter(dac.ch1)
meas1.register_parameter(dmm1.v3, setpoints=(dac.ch1,))
meas1.register_parameter(dmm2.v3, setpoints=(dac.ch1,))
[7]:
<qcodes.dataset.measurements.Measurement at 0x7ff8a7a57890>
[8]:
data_acq_time = 0
with meas1.run() as datasaver:
    for set_v in np.linspace(0, 25, 10):
        dac.ch1.set(set_v)

        t1 = time.perf_counter()
        datasaver.add_result(
            (dac.ch1, set_v), (dmm1.v3, dmm1.v3.get()), (dmm2.v3, dmm1.v3.get())
        )
        t2 = time.perf_counter()

        data_acq_time += t2 - t1

    dataset1D1 = datasaver.dataset

print("Report:")
print(f"Data acquisition time:            {data_acq_time} s")
Starting experimental run with id: 1.
Report:
Data acquisition time:            2.007571617999986 s
[9]:
ax, cbax = plot_dataset(dataset1D1)
../../_images/examples_DataSet_Threaded_data_acquisition_14_0.png
../../_images/examples_DataSet_Threaded_data_acquisition_14_1.png

Measurement 2: Threaded data acquisition

In this measurement, we use ThreadPoolParamsCaller for threaded data acquisition. Here also we record the time taken for data acquisition.

ThreadPoolParamsCaller will create a thread pool, and will call given parameters in those threads. Each group of parameters that have the same underlying_instrument protperty will be called in it’s own separate thread, so that parameters that interact with the same instrument are always called sequentially (since communication within the single instrument is not thread-safe). Thanks to the fact that the pool of threads gets reuse for every new call of the parameters, the performance penalty of creating and shutting down threads is not significant in many cases.

If there is a benefit in creating new threads for every new parameter call, then use call_params_threaded function instead.

[10]:
meas2 = Measurement(exp=exp, name="exponential_decay_threaded_data_acquisition")
meas2.register_parameter(dac.ch1)
meas2.register_parameter(dmm1.v3, setpoints=(dac.ch1,))
meas2.register_parameter(dmm2.v3, setpoints=(dac.ch1,))
[10]:
<qcodes.dataset.measurements.Measurement at 0x7ff8a7ac6e90>
[11]:
pool_caller = ThreadPoolParamsCaller(
    dac.ch1, dmm1.v3, dmm2.v3
)  # <----- This line is different

data_acq_time = 0
with (
    meas2.run() as datasaver,
    pool_caller as call_params_in_pool,
):  # <----- This line is different
    for set_v in np.linspace(0, 25, 10):
        dac.ch1.set(set_v)

        t1 = time.perf_counter()
        datasaver.add_result(*call_params_in_pool())  # <----- This line is different
        t2 = time.perf_counter()

        data_acq_time += t2 - t1

        # With ``call_params_threaded`` this line that measures parameters
        # and passes them to the datasaver would be:
        # datasaver.add_result(*call_params_threaded((dac.ch1, dmm1.v3, dmm2.v3)))

    dataset1D2 = datasaver.dataset

print("Report:")
print(f"Data acquisition time:            {data_acq_time} s")
Starting experimental run with id: 2.
Report:
Data acquisition time:            1.0086025770002038 s
[12]:
ax, cbax = plot_dataset(dataset1D2)
../../_images/examples_DataSet_Threaded_data_acquisition_18_0.png
../../_images/examples_DataSet_Threaded_data_acquisition_18_1.png

Non threaded and threaded data acquisition with do1d

Lets now see how to do non threaded and threaded data acquisition with do1d function. For threaded data acquisition, use_threads argument will be set to True. Same argument is available on do0d, do2d and dond functions.

Measurement 3: Non threaded data acquisition with do1d

[13]:
t0 = time.perf_counter()
do1d(dac.ch1, 0, 1, 10, 0, dmm1.v3, dmm2.v3, do_plot=True)
t1 = time.perf_counter()

print("Report:")
print(f"Data acquisition time:            {t1 - t0} s")
Starting experimental run with id: 3. Using 'qcodes.dataset.do1d'
Report:
Data acquisition time:            3.0116265600000247 s
../../_images/examples_DataSet_Threaded_data_acquisition_21_1.png
../../_images/examples_DataSet_Threaded_data_acquisition_21_2.png

Measurement 4: Threaded data acquisition with do1d

[14]:
t0 = time.perf_counter()
do1d(
    dac.ch1, 0, 1, 10, 0, dmm1.v3, dmm2.v3, do_plot=True, use_threads=True
)  # <------- This line is different
t1 = time.perf_counter()

print("Report:")
print(f"Data acquisition time:            {t1 - t0} s")
Starting experimental run with id: 4. Using 'qcodes.dataset.do1d'
Report:
Data acquisition time:            1.9259768499999836 s
../../_images/examples_DataSet_Threaded_data_acquisition_23_1.png
../../_images/examples_DataSet_Threaded_data_acquisition_23_2.png
[ ]: