This page was generated from docs/examples/writing_drivers/A-ParameterWithSetpoints-Example-with-Dual-Setpoints.ipynb. Interactive online version: .
A ParameterWithSetpoints Example with Dual Setpoints¶
This notebook explains how you can account for dual setpoints using ParameterWithSetpoints
. The basics of writing drivers using ParameterWithSetpoints
is covered in the notebook named Simple Example of ParameterWithSetpoints.
In this example we consider a dummy instrument that can return a time trace or the discreet Fourier transform (magnitude square) of that trace. The setpoints are accounted for in an easy way.
[1]:
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from typing_extensions import Unpack
import os
import numpy as np
import qcodes.validators as vals
from qcodes.dataset import (
Measurement,
initialise_or_create_database_at,
load_or_create_experiment,
plot_dataset,
)
from qcodes.instrument import Instrument, InstrumentBaseKWArgs
from qcodes.parameters import Parameter, ParameterWithSetpoints
Logging hadn't been started.
Activating auto-logging. Current session state plus future input saved.
Filename : /home/runner/.qcodes/logs/command_history.log
Mode : append
Output logging : True
Raw input log : False
Timestamping : True
State : active
Qcodes Logfile : /home/runner/.qcodes/logs/240918-6805-qcodes.log
[2]:
def timetrace(npts: int, dt: float) -> np.ndarray:
"""
A very realistic-looking signal
"""
# freq = 10/(dt*npts)
# decay = 1/(dt*npts)
freq = 10
decay = 1
time = np.linspace(0, npts * dt, npts, endpoint=False)
signal = np.exp(-decay * time) * np.sin(2 * np.pi * freq * time)
noise = 0.1 * np.random.randn(npts)
return signal + noise
[3]:
class TimeTrace(ParameterWithSetpoints):
def get_raw(self):
npts = self.root_instrument.npts()
dt = self.root_instrument.dt()
return timetrace(npts, dt)
class Periodogram(ParameterWithSetpoints):
def get_raw(self):
tt = self.root_instrument.trace()
return np.abs(np.fft.fft(tt)) ** 2
class TimeAxis(Parameter):
def get_raw(self):
npts = self.root_instrument.npts()
dt = self.root_instrument.dt()
return np.linspace(0, dt * npts, npts, endpoint=False)
class FrequencyAxis(Parameter):
def get_raw(self):
npts = self.root_instrument.npts()
dt = self.root_instrument.dt()
return np.linspace(0, 1 / dt, npts)
class OzzyLowScope(Instrument):
def __init__(self, name: str, **kwargs: "Unpack[InstrumentBaseKWArgs]"):
super().__init__(name, **kwargs)
self.npts = self.add_parameter(
name="npts",
initial_value=500,
label="Number of points",
get_cmd=None,
set_cmd=None,
)
self.dt = self.add_parameter(
name="dt",
initial_value=1e-3,
label="Time resolution",
unit="s",
get_cmd=None,
set_cmd=None,
)
self.time_axis = self.add_parameter(
name="time_axis",
label="Time",
unit="s",
vals=vals.Arrays(shape=(self.npts,)),
parameter_class=TimeAxis,
)
self.freq_axis = self.add_parameter(
name="freq_axis",
label="Frequency",
unit="Hz",
vals=vals.Arrays(shape=(self.npts,)),
parameter_class=FrequencyAxis,
)
self.trace = self.add_parameter(
name="trace",
label="Signal",
unit="V",
vals=vals.Arrays(shape=(self.npts,)),
setpoints=(self.time_axis,),
parameter_class=TimeTrace,
)
self.periodogram = self.add_parameter(
name="periodogram",
label="Periodogram",
unit="V^2/Hz",
vals=vals.Arrays(shape=(self.npts,)),
setpoints=(self.freq_axis,),
parameter_class=Periodogram,
)
[4]:
osc = OzzyLowScope("osc")
[5]:
tutorial_db_path = os.path.join(os.getcwd(), "tutorial_doND.db")
initialise_or_create_database_at(tutorial_db_path)
load_or_create_experiment(experiment_name="tutorial_exp", sample_name="no sample")
[5]:
tutorial_exp#no sample#1@/home/runner/work/Qcodes/Qcodes/docs/examples/writing_drivers/tutorial_doND.db
-------------------------------------------------------------------------------------------------------
Measurement 1: Time Trace¶
[6]:
timemeas = Measurement()
timemeas.register_parameter(osc.trace)
osc.dt(0.001)
with timemeas.run() as datasaver:
datasaver.add_result((osc.trace, osc.trace.get()))
dataset = datasaver.dataset
Starting experimental run with id: 1.
[7]:
_ = plot_dataset(dataset)
[8]:
osc.dt(0.01) # make the trace 10 times longer
with timemeas.run() as datasaver:
datasaver.add_result((osc.trace, osc.trace.get()))
dataset = datasaver.dataset
Starting experimental run with id: 2.
[9]:
_ = plot_dataset(dataset)
Measurement 2: Periodogram¶
[10]:
freqmeas = Measurement()
freqmeas.register_parameter(osc.periodogram)
osc.dt(0.01)
with freqmeas.run() as datasaver:
datasaver.add_result((osc.periodogram, osc.periodogram.get()))
dataid = datasaver.dataset
Starting experimental run with id: 3.
[11]:
axs, cbax = plot_dataset(dataset)
aa = axs[0]
aa.set_yscale("log")
Just for the fun of it, let’s make a measurement with the averaged periodogram.
[12]:
no_of_avgs = 100
with freqmeas.run() as datasaver:
temp_per = osc.periodogram()
for _ in range(no_of_avgs - 1):
temp_per += osc.periodogram()
datasaver.add_result(
(osc.periodogram, temp_per / no_of_avgs), (osc.freq_axis, osc.freq_axis.get())
)
dataset = datasaver.dataset
Starting experimental run with id: 4.
[13]:
axs, cbax = plot_dataset(dataset)
aa = axs[0]
aa.set_yscale("log")
Measurement 3: 2D Sweeping¶
[14]:
meas = Measurement()
meas.register_parameter(osc.npts)
meas.register_parameter(osc.trace, setpoints=[osc.npts], paramtype="numeric")
with meas.run() as datasaver:
osc.dt(0.001)
for npts in [200, 400, 600, 800, 1000, 1200]:
osc.npts(npts)
datasaver.add_result((osc.trace, osc.trace.get()), (osc.npts, osc.npts()))
dataset = datasaver.dataset
Starting experimental run with id: 5.
[15]:
_ = plot_dataset(dataset)
[ ]:
[ ]: