from __future__ import annotations
import logging
import os
import warnings
from collections.abc import Callable, Mapping, Sequence
from enum import Enum
from importlib.metadata import entry_points
from pathlib import Path
from typing import (
TYPE_CHECKING,
Any,
Literal,
Protocol,
runtime_checkable,
)
import numpy as np
from qcodes.dataset.descriptions.dependencies import InterDependencies_
from qcodes.dataset.descriptions.param_spec import ParamSpec, ParamSpecBase
from qcodes.dataset.export_config import (
DataExportType,
get_data_export_name_elements,
get_data_export_path,
get_data_export_prefix,
get_data_export_type,
)
from .descriptions.versioning.converters import new_to_old
from .exporters.export_to_csv import dataframe_to_csv
from .exporters.export_to_xarray import xarray_to_h5netcdf_with_complex_numbers
from .sqlite.queries import raw_time_to_str_time
if TYPE_CHECKING:
from typing import TypeAlias
import pandas as pd
import xarray as xr
from qcodes.dataset.descriptions.rundescriber import RunDescriber
from qcodes.dataset.descriptions.versioning.rundescribertypes import Shapes
from qcodes.dataset.linked_datasets.links import Link
from qcodes.parameters import ParameterBase
from .data_set_cache import DataSetCache
from .exporters.export_info import ExportInfo
# for unknown reason entrypoints registered in pyproct.toml shows up
# twice here convert to set to ensure no duplication.
_EXPORT_CALLBACKS = set(entry_points(group="qcodes.dataset.on_export"))
array_like_types = (tuple, list, np.ndarray)
scalar_res_types: TypeAlias = (
str | complex | np.integer | np.floating | np.complexfloating
)
values_type: TypeAlias = scalar_res_types | np.ndarray | Sequence[scalar_res_types]
res_type: TypeAlias = "tuple[ParameterBase | str, values_type]"
setpoints_type: TypeAlias = "Sequence[str | ParameterBase]"
SPECS: TypeAlias = list[ParamSpec]
# Transition period type: SpecsOrInterDeps. We will allow both as input to
# the DataSet constructor for a while, then deprecate SPECS and finally remove
# the ParamSpec class
SpecsOrInterDeps: TypeAlias = SPECS | InterDependencies_
ParameterData: TypeAlias = dict[str, dict[str, np.ndarray]]
LOG = logging.getLogger(__name__)
class CompletedError(RuntimeError):
pass
[docs]
@runtime_checkable
class DataSetProtocol(Protocol):
# the "persistent traits" are the attributes/properties of the DataSet
# that are NOT tied to the representation of the DataSet in any particular
# database
persistent_traits: tuple[str, ...] = (
"name",
"guid",
"number_of_results",
"exp_name",
"sample_name",
"completed",
"snapshot",
"run_timestamp_raw",
"description",
"completed_timestamp_raw",
"metadata",
"parent_dataset_links",
"captured_run_id",
"captured_counter",
)
self,
*,
snapshot: Mapping[Any, Any],
interdeps: InterDependencies_,
shapes: Shapes | None = None,
parent_datasets: Sequence[Mapping[Any, Any]] = (),
write_in_background: bool = False,
) -> None: ...
@property
def pristine(self) -> bool: ...
@property
def running(self) -> bool: ...
@property
def completed(self) -> bool: ...
[docs]
def mark_completed(self) -> None: ...
# dataset attributes
@property
def run_id(self) -> int: ...
@property
def captured_run_id(self) -> int: ...
@property
def counter(self) -> int: ...
@property
def captured_counter(self) -> int: ...
@property
def guid(self) -> str: ...
@property
def number_of_results(self) -> int: ...
@property
def name(self) -> str: ...
@property
def exp_name(self) -> str: ...
@property
def exp_id(self) -> int: ...
@property
def sample_name(self) -> str: ...
[docs]
def run_timestamp(self, fmt: str = "%Y-%m-%d %H:%M:%S") -> str | None: ...
@property
def run_timestamp_raw(self) -> float | None: ...
[docs]
def completed_timestamp(self, fmt: str = "%Y-%m-%d %H:%M:%S") -> str | None: ...
@property
def completed_timestamp_raw(self) -> float | None: ...
# snapshot and metadata
@property
def snapshot(self) -> dict[str, Any] | None: ...
[docs]
def add_snapshot(self, snapshot: str, overwrite: bool = False) -> None: ...
@property
def _snapshot_raw(self) -> str | None: ...
@property
def metadata(self) -> dict[str, Any]: ...
@property
def path_to_db(self) -> str | None: ...
# dataset description and links
@property
def paramspecs(self) -> dict[str, ParamSpec]: ...
@property
def description(self) -> RunDescriber: ...
@property
def parent_dataset_links(self) -> list[Link]: ...
# data related members
self,
export_type: DataExportType | str | None = None,
path: Path | str | None = None,
prefix: str | None = None,
automatic_export: bool = False,
) -> None: ...
@property
def export_info(self) -> ExportInfo: ...
@property
def cache(self) -> DataSetCache[DataSetProtocol]: ...
[docs]
def get_parameter_data(
self,
*params: str | ParamSpec | ParameterBase,
start: int | None = None,
end: int | None = None,
callback: Callable[[float], None] | None = None,
) -> ParameterData: ...
[docs]
def get_parameters(self) -> SPECS:
# used by plottr
...
@property
def dependent_parameters(self) -> tuple[ParamSpecBase, ...]: ...
# exporters to other in memory formats
[docs]
def to_xarray_dataarray_dict(
self,
*params: str | ParamSpec | ParameterBase,
start: int | None = None,
end: int | None = None,
use_multi_index: Literal["auto", "always", "never"] = "auto",
) -> dict[str, xr.DataArray]: ...
self,
*params: str | ParamSpec | ParameterBase,
start: int | None = None,
end: int | None = None,
use_multi_index: Literal["auto", "always", "never"] = "auto",
) -> xr.Dataset: ...
[docs]
def to_pandas_dataframe_dict(
self,
*params: str | ParamSpec | ParameterBase,
start: int | None = None,
end: int | None = None,
) -> dict[str, pd.DataFrame]: ...
[docs]
def to_pandas_dataframe(
self,
*params: str | ParamSpec | ParameterBase,
start: int | None = None,
end: int | None = None,
) -> pd.DataFrame: ...
# private members called by various other parts or the api
def _enqueue_results(
self, result_dict: Mapping[ParamSpecBase, np.ndarray]
) -> None: ...
def _flush_data_to_database(self, block: bool = False) -> None: ...
@property
def _parameters(self) -> str | None: ...
def _set_export_info(self, export_info: ExportInfo) -> None: ...
def __len__(self) -> int: ...
[docs]
def the_same_dataset_as(self, other: DataSetProtocol) -> bool: ...
class BaseDataSet(DataSetProtocol, Protocol):
# shared methods between all implementations of the dataset
def the_same_dataset_as(self, other: DataSetProtocol) -> bool:
"""
Check if two datasets correspond to the same run by comparing
all their persistent traits. Note that this method
does not compare the data itself.
This function raises if the GUIDs match but anything else doesn't
Args:
other: the dataset to compare self to
"""
if not isinstance(other, DataSetProtocol):
return False
guids_match = self.guid == other.guid
# note that the guid is in itself a persistent trait of the DataSet.
# We therefore do not need to handle the case of guids not equal
# but all persistent traits equal, as this is not possible.
# Thus, if all persistent traits are the same we can safely return True
for attr in self.persistent_traits:
if getattr(self, attr) != getattr(other, attr):
if guids_match:
raise RuntimeError(
"Critical inconsistency detected! "
"The two datasets have the same GUID, "
f'but their "{attr}" differ.'
)
return False
return True
def get_parameters(self) -> SPECS:
old_interdeps = new_to_old(self.description.interdeps)
return list(old_interdeps.paramspecs)
def export(
self,
export_type: DataExportType | str | None = None,
path: str | Path | None = None,
prefix: str | None = None,
automatic_export: bool = False,
) -> None:
"""Export data to disk with file name `{prefix}{name_elements}.{ext}`.
Name elements are names of dataset object attributes that are taken
from the dataset and inserted into the name of the export file, for
example if name elements are ``["captured_run_id", "guid"]``, then
the file name will be `{prefix}{captured_run_id}_{guid}.{ext}`.
Values for the export type, path, export_name_elements and prefix can
also be set in the "dataset" section of qcodes config.
Args:
export_type: Data export type, e.g. "netcdf" or ``DataExportType.NETCDF``,
defaults to a value set in qcodes config
path: Export path, defaults to value set in config
prefix: File prefix, e.g. ``qcodes_``, defaults to value set in config.
automatic_export: Is this export automatic?
Raises:
ValueError: If the export data type is not specified or unknown,
raise an error
"""
if isinstance(path, str):
path = Path(path)
parsed_export_type = get_data_export_type(export_type)
if parsed_export_type is None and export_type is None:
raise ValueError(
"No data export type specified. Please set the export data type "
"by using ``qcodes.dataset.export_config.set_data_export_type`` or "
"give an explicit export_type when calling ``dataset.export`` manually."
)
elif parsed_export_type is None:
raise ValueError(
f"Export type {export_type} is unknown. Export type "
f"should be a member of the `DataExportType` enum"
)
export_path = self._export_data(
export_type=parsed_export_type,
path=path,
prefix=prefix,
automatic_export=automatic_export,
)
export_info = self.export_info
if export_path is not None:
export_info.export_paths[parsed_export_type.value] = os.path.abspath(
export_path
)
self._set_export_info(export_info)
def _export_data(
self,
export_type: DataExportType,
path: Path | None = None,
prefix: str | None = None,
automatic_export: bool = False,
) -> Path | None:
"""Export data to disk with file name `{prefix}{name_elements}.{ext}`.
Name elements are names of dataset object attributes that are taken
from the dataset and inserted into the name of the export file, for
example if name elements are ``["captured_run_id", "guid"]``, then
the file name will be `{prefix}{captured_run_id}_{guid}.{ext}`.
Values for the export type, path, export_name_elements and prefix can
also be set in the "dataset" section of qcodes config.
Args:
export_type: Data export type, e.g. DataExportType.NETCDF
path: Export path, defaults to value set in config
prefix: File prefix, e.g. "qcodes_", defaults to value set in config.
automatic_export: Is this export automatic?
Returns:
str: Path file was saved to, returns None if no file was saved.
"""
# Set defaults to values in config if the value was not set
# (defaults to None)
path = path if path is not None else get_data_export_path()
path.mkdir(exist_ok=True, parents=True)
prefix = prefix if prefix is not None else get_data_export_prefix()
if DataExportType.NETCDF == export_type:
file_name = self._export_file_name(
prefix=prefix, export_type=DataExportType.NETCDF
)
export_path = Path(self._export_as_netcdf(path=path, file_name=file_name))
elif DataExportType.CSV == export_type:
file_name = self._export_file_name(
prefix=prefix, export_type=DataExportType.CSV
)
export_path = Path(self._export_as_csv(path=path, file_name=file_name))
else:
export_path = None
for export_callback in _EXPORT_CALLBACKS:
try:
export_callback_function = export_callback.load()
LOG.info("Executing on_export callback %s", export_callback.name)
export_callback_function(export_path, automatic_export=automatic_export)
except Exception:
LOG.exception("Exception during export callback function")
return export_path
def _export_file_name(self, prefix: str, export_type: DataExportType) -> str:
"""Get export file name"""
extension = export_type.value
name_elements = get_data_export_name_elements()
post_fix = "_".join([str(getattr(self, name)) for name in name_elements])
return f"{prefix}{post_fix}.{extension}"
def _export_as_netcdf(self, path: Path, file_name: str) -> Path:
"""Export data as netcdf to a given path with file prefix"""
file_path = path / file_name
xarr_dataset = self.to_xarray_dataset()
xarray_to_h5netcdf_with_complex_numbers(xarr_dataset, file_path)
return file_path
def _export_as_csv(self, path: Path, file_name: str) -> Path:
"""Export data as csv to a given path with file prefix."""
dfdict = self.to_pandas_dataframe_dict()
dataframe_to_csv(
dfdict=dfdict,
path=path,
single_file=True,
single_file_name=file_name,
)
return path / file_name
def _add_metadata_to_netcdf_if_nc_exported(self, tag: str, data: Any) -> None:
export_paths = self.export_info.export_paths
nc_file = export_paths.get(DataExportType.NETCDF.value, None)
if nc_file is not None:
import h5netcdf # type: ignore[import-untyped]
try:
with h5netcdf.File(
nc_file, mode="r+", decode_vlen_strings=False
) as h5nc_file:
h5nc_file.attrs[tag] = data
except (
FileNotFoundError,
OSError,
): # older versions of h5py may throw a OSError here
warnings.warn(
f"Could not add metadata to the exported NetCDF file, "
f"was the file moved? GUID {self.guid}, NetCDF file {nc_file}"
)
@staticmethod
def _validate_parameters(*params: str | ParamSpec | ParameterBase) -> list[str]:
"""
Validate that the provided parameters have a name and return those
names as a list.
The Parameters may be a mix of strings, ParamSpecs or ordinary
QCoDeS parameters.
"""
valid_param_names = []
for maybe_param in params:
if isinstance(maybe_param, str):
valid_param_names.append(maybe_param)
else:
try:
maybe_param_name = maybe_param.name
except Exception as e:
raise ValueError("This parameter does not have a name") from e
valid_param_names.append(maybe_param_name)
return valid_param_names
@staticmethod
def _reshape_array_for_cache(
param: ParamSpecBase, param_data: np.ndarray
) -> np.ndarray:
"""
Shape cache data so it matches data read from database.
This means:
- Add an extra singleton dim to array data
- flatten non array data into a linear array.
"""
param_data = np.atleast_1d(param_data)
if param.type == "array":
new_data = np.reshape(param_data, (1, *param_data.shape))
else:
new_data = param_data.ravel()
return new_data
def run_timestamp(self, fmt: str = "%Y-%m-%d %H:%M:%S") -> str | None:
"""
Returns run timestamp in a human-readable format
The run timestamp is the moment when the measurement for this run
started. If the run has not yet been started, this function returns
None.
Consult with :func:`time.strftime` for information about the format.
"""
return raw_time_to_str_time(self.run_timestamp_raw, fmt)
def completed_timestamp(self, fmt: str = "%Y-%m-%d %H:%M:%S") -> str | None:
"""
Returns timestamp when measurement run was completed
in a human-readable format
If the run (or the dataset) is not completed, then returns None.
Consult with ``time.strftime`` for information about the format.
"""
return raw_time_to_str_time(self.completed_timestamp_raw, fmt)
@property
def dependent_parameters(self) -> tuple[ParamSpecBase, ...]:
"""
Return all the parameters that explicitly depend on other parameters
"""
return tuple(self.description.interdeps.dependencies.keys())
[docs]
class DataSetType(str, Enum):
DataSet = "DataSet"
DataSetInMem = "DataSetInMem"