Source code for qcodes.dataset.plotting

"""
This plotting module provides various functions to plot the data measured
using QCoDeS.
"""

from __future__ import annotations

import inspect
import logging
import os
from contextlib import contextmanager
from functools import partial
from textwrap import wrap
from typing import TYPE_CHECKING, Any, Literal, Optional, cast

import numpy as np

if TYPE_CHECKING:
    from collections.abc import Sequence

    import matplotlib
    import matplotlib.axes
    import matplotlib.ticker
    from matplotlib.axes import Axes
    from matplotlib.colorbar import Colorbar

    from qcodes.dataset.data_set_protocol import DataSetProtocol

import qcodes as qc
from qcodes.dataset.data_set import load_by_run_spec
from qcodes.plotting import auto_color_scale_from_config, find_scale_and_prefix

from .data_export import (
    DSPlotData,
    _get_data_from_ds,
    _strings_as_ints,
    get_1D_plottype,
    get_2D_plottype,
    reshape_2D_data,
)

log = logging.getLogger(__name__)
DB = qc.config["core"]["db_location"]
_DEFAULT_COLORMAP = "viridis"
# NamedData is the structure _get_data_from_ds returns and that plot_by_id
# uses internally
NamedData = list[list[DSPlotData]]

AxesTuple = tuple["Axes", "Colorbar"]
AxesTupleList = tuple[list["Axes"], list[Optional["Colorbar"]]]


@contextmanager
def _appropriate_kwargs(plottype: str, colorbar_present: bool, **kwargs: Any) -> Any:
    """
    NB: Only to be used inside :func"`plot_dataset`.

    Context manager to temporarily mutate the plotting kwargs to be appropriate
    for a specific plottype. This is helpful since :func:`plot_dataset` may have
    to generate different kinds of plots (e.g. heatmaps and line plots) and
    the user may want to specify kwargs only relevant to some of them
    (e.g. 'cmap', that line plots cannot consume). Those kwargs should then not
    be passed to all plots, which is what this contextmanager handles.

    Args:
        plottype: The plot type for which the kwargs should be adjusted
        colorbar_present: Is there a non-None colorbar in this plot iteration?
        **kwargs: Keyword arguments passed to the plotting function.
    """

    def linehandler(**kwargs: Any) -> Any:
        kwargs.pop("cmap", None)
        return kwargs

    def heatmaphandler(**kwargs: Any) -> Any:
        if not (colorbar_present) and "cmap" not in kwargs:
            kwargs["cmap"] = qc.config.plotting.default_color_map
        return kwargs

    plot_handler_mapping = {
        "1D_line": linehandler,
        "1D_point": linehandler,
        "1D_bar": linehandler,
        "2D_point": heatmaphandler,
        "2D_grid": heatmaphandler,
        "2D_scatter": heatmaphandler,
        "2D_equidistant": heatmaphandler,
        "2D_unknown": heatmaphandler,
    }

    yield plot_handler_mapping[plottype](**kwargs.copy())


[docs] def plot_dataset( dataset: DataSetProtocol, axes: Axes | Sequence[Axes] | None = None, colorbars: Colorbar | Sequence[Colorbar] | Sequence[None] | None = None, rescale_axes: bool = True, auto_color_scale: bool | None = None, cutoff_percentile: tuple[float, float] | float | None = None, complex_plot_type: Literal["real_and_imag", "mag_and_phase"] = "real_and_imag", complex_plot_phase: Literal["radians", "degrees"] = "radians", **kwargs: Any, ) -> AxesTupleList: """ Construct all plots for a given dataset Implemented so far: * 1D line and scatter plots * 2D plots on filled out rectangular grids * 2D scatterplots (fallback) The function can optionally be supplied with a matplotlib axes or a list of axes that will be used for plotting. The user should ensure that the number of axes matches the number of datasets to plot. To plot several (1D) dataset in the same axes supply it several times. Colorbar axes are created dynamically. If colorbar axes are supplied, they will be reused, yet new colorbar axes will be returned. The plot has a title that comprises run id, experiment name, and sample name. ``**kwargs`` are passed to matplotlib's relevant plotting functions By default the data in any vector plot will be rasterized for scatter plots and heatmaps if more than 5000 points are supplied. This can be overridden by supplying the `rasterized` kwarg. Args: dataset: The dataset to plot axes: Optional Matplotlib axes to plot on. If not provided, new axes will be created colorbars: Optional Matplotlib Colorbars to use for 2D plots. If not provided, new ones will be created rescale_axes: If True, tick labels and units for axes of parameters with standard SI units will be rescaled so that, for example, '0.00000005' tick label on 'V' axis are transformed to '50' on 'nV' axis ('n' is 'nano') auto_color_scale: If True, the colorscale of heatmap plots will be automatically adjusted to disregard outliers. cutoff_percentile: Percentile of data that may maximally be clipped on both sides of the distribution. If given a tuple (a,b) the percentile limits will be a and 100-b. See also the plotting tuorial notebook. complex_plot_type: Method for converting complex-valued parameters into two real-valued parameters, either ``"real_and_imag"`` or ``"mag_and_phase"``. Applicable only for the cases where the dataset contains complex numbers complex_plot_phase: Format of phase for plotting complex-valued data, either ``"radians"`` or ``"degrees"``. Applicable only for the cases where the dataset contains complex numbers **kwargs: Keyword arguments passed to the plotting function. Returns: A list of axes and a list of colorbars of the same length. The colorbar axes may be `None` if no colorbar is created (e.g. for 1D plots) Config dependencies: (qcodesrc.json) """ import matplotlib.axes import matplotlib.colorbar import matplotlib.pyplot as plt # list of kwargs for plotting function, so that kwargs can be passed to # :func:`plot_dataset` and will be distributed to the respective plotting func. # subplots passes on the kwargs called `fig_kw` to the underlying `figure` call # First find the kwargs that belong to subplots and than add those that are # redirected to the `figure`-call. SUBPLOTS_OWN_KWARGS = set(inspect.signature(plt.subplots).parameters.keys()) SUBPLOTS_OWN_KWARGS.remove("fig_kw") FIGURE_KWARGS = set(inspect.signature(plt.figure).parameters.keys()) FIGURE_KWARGS.remove("kwargs") SUBPLOTS_KWARGS = SUBPLOTS_OWN_KWARGS.union(FIGURE_KWARGS) # handle arguments and defaults subplots_kwargs = { k: kwargs.pop(k) for k in set(kwargs).intersection(SUBPLOTS_KWARGS) } # sanitize the complex plotting kwargs if complex_plot_type not in ["real_and_imag", "mag_and_phase"]: raise ValueError( f"Invalid complex plot type given. Received {complex_plot_type} " 'but can only accept "real_and_imag" or "mag_and_phase".' ) if complex_plot_phase not in ["radians", "degrees"]: raise ValueError( f"Invalid complex plot phase given. Received {complex_plot_phase} " 'but can only accept "degrees" or "radians".' ) degrees = complex_plot_phase == "degrees" # Retrieve info about the run for the title experiment_name = dataset.exp_name sample_name = dataset.sample_name title = ( f"Run #{dataset.captured_run_id}, " f"Experiment {experiment_name} ({sample_name})" ) alldata: NamedData = _get_data_from_ds(dataset) alldata = _complex_to_real_preparser( alldata, conversion=complex_plot_type, degrees=degrees ) nplots = len(alldata) if isinstance(axes, matplotlib.axes.Axes): axeslist = [axes] else: axeslist = cast(list[matplotlib.axes.Axes], axes) if isinstance(colorbars, matplotlib.colorbar.Colorbar): colorbars = [colorbars] if axeslist is None: axeslist = [] for i in range(nplots): fig, ax = plt.subplots(1, 1, **subplots_kwargs) axeslist.append(ax) else: if len(subplots_kwargs) != 0: raise RuntimeError( f"Error: You cannot provide arguments for the " f"axes/figure creation if you supply your own " f"axes. " f"Provided arguments: {subplots_kwargs}" ) if len(axeslist) != nplots: raise RuntimeError( f"Trying to make {nplots} plots, but" f"received {len(axeslist)} axes objects." ) if colorbars is None: colorbars = len(axeslist) * [None] new_colorbars: list[Colorbar | None] = [] for data, ax, colorbar in zip(alldata, axeslist, colorbars): if len(data) == 2: # 1D PLOTTING log.debug(f"Doing a 1D plot with kwargs: {kwargs}") xpoints = data[0]["data"] ypoints = data[1]["data"] plottype = get_1D_plottype(xpoints, ypoints) log.debug(f"Determined plottype: {plottype}") if plottype == "1D_line": # sort for plotting order = xpoints.argsort() xpoints = xpoints[order] ypoints = ypoints[order] with _appropriate_kwargs(plottype, colorbar is not None, **kwargs) as k: ax.plot(xpoints, ypoints, **k) elif plottype == "1D_point": with _appropriate_kwargs(plottype, colorbar is not None, **kwargs) as k: ax.scatter(xpoints, ypoints, **k) elif plottype == "1D_bar": with _appropriate_kwargs(plottype, colorbar is not None, **kwargs) as k: ax.bar(xpoints, ypoints, **k) else: raise ValueError("Unknown plottype. Something is way wrong.") _set_data_axes_labels(ax, data) if rescale_axes: _rescale_ticks_and_units(ax, data, colorbar) new_colorbars.append(None) ax.set_title("\n".join(wrap(title))) elif len(data) == 3: # 2D PLOTTING log.debug(f"Doing a 2D plot with kwargs: {kwargs}") if data[2]["shape"] is None: xpoints = data[0]["data"].flatten() ypoints = data[1]["data"].flatten() zpoints = data[2]["data"].flatten() plottype = get_2D_plottype(xpoints, ypoints, zpoints) log.debug(f"Determined plottype: {plottype}") else: xpoints = data[0]["data"] ypoints = data[1]["data"] zpoints = data[2]["data"] plottype = "2D_grid" how_to_plot = { "2D_grid": plot_on_a_plain_grid, "2D_equidistant": plot_on_a_plain_grid, "2D_point": plot_2d_scatterplot, "2D_unknown": plot_2d_scatterplot, } plot_func = how_to_plot[plottype] with _appropriate_kwargs(plottype, colorbar is not None, **kwargs) as k: ax, colorbar = plot_func(xpoints, ypoints, zpoints, ax, colorbar, **k) _set_data_axes_labels(ax, data, colorbar) if rescale_axes: _rescale_ticks_and_units(ax, data, colorbar) auto_color_scale_from_config( colorbar, auto_color_scale, zpoints, cutoff_percentile ) new_colorbars.append(colorbar) ax.set_title("\n".join(wrap(title))) else: log.warning( "Multi-dimensional data encountered. " f'parameter {data[-1]["name"]} depends on ' f"{len(data)-1} parameters, cannot plot " f"that." ) new_colorbars.append(None) if len(axeslist) != len(new_colorbars): raise RuntimeError( "Non equal number of axes. Perhaps colorbar is " "missing from one of the cases above" ) return axeslist, new_colorbars
def plot_and_save_image( data: DataSetProtocol, save_pdf: bool = True, save_png: bool = True ) -> tuple[ DataSetProtocol, tuple[Axes, ...], tuple[Colorbar | None, ...], ]: """ The utility function to plot results and save the figures either in pdf or png or both formats. Args: data: The QCoDeS dataset to be plotted. save_pdf: Save figure in pdf format. save_png: Save figure in png format. """ from matplotlib.figure import Figure from qcodes import config dataid = data.captured_run_id axes, cbs = plot_dataset(data) mainfolder = config.user.mainfolder experiment_name = data.exp_name sample_name = data.sample_name storage_dir = os.path.join(mainfolder, experiment_name, sample_name) os.makedirs(storage_dir, exist_ok=True) png_dir = os.path.join(storage_dir, "png") pdf_dif = os.path.join(storage_dir, "pdf") os.makedirs(png_dir, exist_ok=True) os.makedirs(pdf_dif, exist_ok=True) for i, ax in enumerate(axes): assert isinstance(ax.figure, Figure) if save_pdf: full_path = os.path.join(pdf_dif, f"{dataid}_{i}.pdf") ax.figure.savefig(full_path, dpi=500, bbox_inches="tight") if save_png: full_path = os.path.join(png_dir, f"{dataid}_{i}.png") ax.figure.savefig(full_path, dpi=500, bbox_inches="tight") res = data, tuple(axes), tuple(cbs) return res
[docs] def plot_by_id( run_id: int, axes: Axes | Sequence[Axes] | None = None, colorbars: Colorbar | Sequence[Colorbar] | None = None, rescale_axes: bool = True, auto_color_scale: bool | None = None, cutoff_percentile: tuple[float, float] | float | None = None, complex_plot_type: Literal["real_and_imag", "mag_and_phase"] = "real_and_imag", complex_plot_phase: Literal["radians", "degrees"] = "radians", **kwargs: Any, ) -> AxesTupleList: """ Construct all plots for a given `run_id`. Here `run_id` is an alias for `captured_run_id` for historical reasons. See the docs of :func:`qcodes.dataset.load_by_run_spec` for details of loading runs. All other arguments are forwarded to :func:`.plot_dataset`, see this for more details. """ dataset = load_by_run_spec(captured_run_id=run_id) return plot_dataset( dataset, axes, colorbars, rescale_axes, auto_color_scale, cutoff_percentile, complex_plot_type, complex_plot_phase, **kwargs, )
def _complex_to_real_preparser( alldata: Sequence[Sequence[DSPlotData]], conversion: Literal["real_and_imag", "mag_and_phase"], degrees: bool = False, ) -> NamedData: """ Convert complex-valued parameters to two real-valued parameters, either real and imaginary part or phase and magnitude part Args: alldata: The data to convert, should be the output of `_get_data_from_ds` conversion: the conversion method, either "real_and_imag" or "mag_and_phase" degrees: Whether to return the phase in degrees. The default is to return the phase in radians """ if conversion not in ["real_and_imag", "mag_and_phase"]: raise ValueError( f"Invalid conversion given. Received {conversion}, " 'but can only accept "real_and_imag" or ' '"mag_and_phase".' ) newdata: NamedData = [] # we build a new NamedData object from the given `alldata` input. # Note that the length of `newdata` will be larger than that of `alldata` # in the case of complex top-level parameters, because a single complex # top-level parameter will be split into two real top-level parameters # (that have the same setpoints). This is the reason why we # use two variables below, new_group and new_groups. for group in alldata: new_group = [] new_groups: NamedData = [[], []] for index, parameter in enumerate(group): data = parameter["data"] if data.dtype.kind == "c": p1, p2 = _convert_complex_to_real( parameter, conversion=conversion, degrees=degrees ) if index < len(group) - 1: # if the above condition is met, we are dealing with # complex setpoints new_group.append(p1) new_group.append(p2) else: # in this case, we are dealing with a complex top-level # parameter. Also, all the setpoints will have been handled # by now. We split the group into two groups, one for each # new (real) top-level parameter new_groups[0] = new_group.copy() new_groups[1] = new_group.copy() new_groups[0].append(p1) new_groups[1].append(p2) else: new_group.append(parameter) if new_groups == [[], []]: # if the above condition is met, the group did not contain a # complex top-level parameter and has thus not been split into two # new groups newdata.append(new_group) else: newdata.append(new_groups[0]) newdata.append(new_groups[1]) return newdata def _convert_complex_to_real( parameter: DSPlotData, conversion: str, degrees: bool ) -> tuple[DSPlotData, DSPlotData]: """ Do the actual conversion and turn one parameter into two. Should only be called from within _complex_to_real_preparser. """ phase_unit = "deg" if degrees else "rad" converters = { "data": { "real_and_imag": lambda x: (np.real(x), np.imag(x)), "mag_and_phase": lambda x: (np.abs(x), np.angle(x, deg=degrees)), }, "labels": { "real_and_imag": lambda label: (label + " [real]", label + " [imag]"), "mag_and_phase": lambda label: (label + " [mag]", label + " [phase]"), }, "units": { "real_and_imag": lambda u: (u, u), "mag_and_phase": lambda u: (u, phase_unit), }, "names": { "real_and_imag": lambda n: (n + "_real", n + "_imag"), "mag_and_phase": lambda n: (n + "_mag", n + "_phase"), }, } new_data = converters["data"][conversion](parameter["data"]) new_labels = converters["labels"][conversion](parameter["label"]) new_units = converters["units"][conversion](parameter["unit"]) new_names = converters["names"][conversion](parameter["name"]) parameter1: DSPlotData = { "name": new_names[0], "label": new_labels[0], "unit": new_units[0], "data": new_data[0], "shape": parameter["shape"], } parameter2: DSPlotData = { "name": new_names[1], "label": new_labels[1], "unit": new_units[1], "data": new_data[1], "shape": parameter["shape"], } return parameter1, parameter2 def _get_label_of_data(data_dict: DSPlotData) -> str: return data_dict["label"] if data_dict["label"] != "" else data_dict["name"] def _make_axis_label(label: str, unit: str) -> str: label = f"{label}" if unit != "" and unit is not None: label += f" ({unit})" return label def _make_label_for_data_axis(data: Sequence[DSPlotData], axis_index: int) -> str: label = _get_label_of_data(data[axis_index]) unit = data[axis_index]["unit"] return _make_axis_label(label, unit) def _set_data_axes_labels( ax: Axes, data: Sequence[DSPlotData], cax: Colorbar | None = None, ) -> None: ax.set_xlabel(_make_label_for_data_axis(data, 0)) ax.set_ylabel(_make_label_for_data_axis(data, 1)) if cax is not None and len(data) > 2: cax.set_label(_make_label_for_data_axis(data, 2)) def plot_2d_scatterplot( x: np.ndarray, y: np.ndarray, z: np.ndarray, ax: Axes, colorbar: Colorbar | None = None, **kwargs: Any, ) -> AxesTuple: """ Make a 2D scatterplot of the data. ``**kwargs`` are passed to matplotlib's scatter used for the plotting. By default the data will be rasterized in any vector plot if more than 5000 points are supplied. This can be overridden by supplying the `rasterized` kwarg. Args: x: The x values y: The y values z: The z values ax: The axis to plot onto colorbar: The colorbar to plot into **kwargs: Keyword arguments passed to the plotting function. Returns: The matplotlib axis handles for plot and colorbar """ import matplotlib if "rasterized" in kwargs.keys(): rasterized = kwargs.pop("rasterized") else: rasterized = len(z) > qc.config.plotting.rasterize_threshold z_is_stringy = isinstance(z[0], str) if z_is_stringy: z_strings = [str(elem) for elem in np.unique(z)] z = _strings_as_ints(z) else: z_strings = [] cmap = kwargs.pop("cmap") if "cmap" in kwargs else _DEFAULT_COLORMAP if z_is_stringy: name = getattr(cmap, "name", _DEFAULT_COLORMAP) cmap = matplotlib.colormaps.get_cmap(name).resampled(len(z_strings)) # according to the docs the c argument should support an ndarray # but that fails type checking mappable = ax.scatter(x=x, y=y, c=z, rasterized=rasterized, cmap=cmap, **kwargs) assert ax.figure is not None if colorbar is not None: colorbar = ax.figure.colorbar(mappable, ax=ax, cax=colorbar.ax) else: colorbar = ax.figure.colorbar(mappable, ax=ax) if z_is_stringy: N = len(z_strings) f = (N - 1) / N colorbar.set_ticks([(n + 0.5) * f for n in range(N)], labels=z_strings) return ax, colorbar def plot_on_a_plain_grid( x: np.ndarray, y: np.ndarray, z: np.ndarray, ax: Axes, colorbar: Colorbar | None = None, **kwargs: Any, ) -> AxesTuple: """ Plot a heatmap of z using x and y as axes. Assumes that the data are rectangular, i.e. that x and y together describe a rectangular grid. The arrays of x and y need not be sorted in any particular way, but data must belong together such that z[n] has x[n] and y[n] as setpoints. The setpoints need not be equidistantly spaced, but linear interpolation is used to find the edges of the plotted squares. ``**kwargs`` are passed to matplotlib's pcolormesh used for the plotting. By default the data in any vector plot will be rasterized if more that 5000 points are supplied. This can be overridden by supplying the `rasterized` kwarg. Args: x: The x values y: The y values z: The z values ax: The axis to plot onto colorbar: A colorbar to reuse the axis for **kwargs: Keyword arguments passed to the plotting function. Returns: The matplotlib axes handle for plot and colorbar """ import matplotlib log.debug(f"Got kwargs: {kwargs}") x_is_stringy = isinstance(x[0], str) y_is_stringy = isinstance(y[0], str) z_is_stringy = isinstance(z[0], str) if x_is_stringy: x_strings = np.unique(x) x = _strings_as_ints(x) else: x_strings = [] if y_is_stringy: y_strings = np.unique(y) y = _strings_as_ints(y) else: y_strings = [] if z_is_stringy: z_strings = [str(elem) for elem in np.unique(z)] z = _strings_as_ints(z) else: z_strings = [] if x.ndim == 2 and y.ndim == 2 and z.ndim == 2: if not np.logical_or(np.any(np.isnan(x)), np.any(np.isnan(y))): # data is on a grid that may or may not be # rectilinear. Rely on matplotlib to plot # this directly x_to_plot, y_to_plot, z_to_plot = x, y, z num_points = x_to_plot.size else: x_to_plot, y_to_plot, z_to_plot = _clip_nan_from_shaped_data(x, y, z) num_points = x_to_plot.size * y_to_plot.size else: x_to_plot, y_to_plot, z_to_plot = reshape_2D_data(x, y, z) num_points = x_to_plot.size * y_to_plot.size if "rasterized" in kwargs.keys(): rasterized = kwargs.pop("rasterized") else: rasterized = num_points > qc.config.plotting.rasterize_threshold cmap = kwargs.pop("cmap") if "cmap" in kwargs else _DEFAULT_COLORMAP if z_is_stringy: name = getattr(cmap, "name", _DEFAULT_COLORMAP) cmap = matplotlib.colormaps.get_cmap(name).resampled(len(z_strings)) colormesh = ax.pcolormesh( x_to_plot, y_to_plot, np.ma.masked_invalid(z_to_plot), rasterized=rasterized, cmap=cmap, shading="nearest", **kwargs, ) if x_is_stringy: ax.set_xticks(np.arange(len(np.unique(x_strings))), labels=x_strings) if y_is_stringy: ax.set_yticks(np.arange(len(np.unique(y_strings)))) ax.set_yticklabels(y_strings) assert ax.figure is not None if colorbar is not None: colorbar = ax.figure.colorbar(colormesh, ax=ax, cax=colorbar.ax) else: colorbar = ax.figure.colorbar(colormesh, ax=ax) if z_is_stringy: N = len(z_strings) f = (N - 1) / N colorbar.set_ticks([(n + 0.5) * f for n in range(N)], labels=z_strings) return ax, colorbar def _clip_nan_from_shaped_data( x: np.ndarray, y: np.ndarray, z: np.ndarray ) -> tuple[np.ndarray, np.ndarray, np.ndarray]: def _on_rectilinear_grid_except_nan(x_data: np.ndarray, y_data: np.ndarray) -> bool: """ check that data is on a rectilinear grid. e.g. all points are the same as the first row and column with the exception of nans. Those represent points not yet measured. """ x_row = x_data[:, 0:1] y_row = y_data[0:1, :] x_diff = np.abs(x_data - x_row) y_diff = np.abs(y_data - y_row) return np.nanmax(x_diff) == 0 and np.nanmax(y_diff) == 0 if _on_rectilinear_grid_except_nan(x, y): # clip any row or column where there are nans in the first row # or column. Since we fill from here we assume that means that no data # has been measured for this row x_to_plot, y_to_plot = x[:, 0], y[0, :] filter_x = ~np.isnan(x_to_plot) filter_y = ~np.isnan(y_to_plot) x_to_plot = x_to_plot[filter_x] y_to_plot = y_to_plot[filter_y] z_to_plot = z[filter_x, :] z_to_plot = z_to_plot[:, filter_y].transpose() else: # fallback to flattening the data and use the same path as # non shaped data after filtering the nans. # this is not ideal as we loose the shape data but # not clear how to do this better. Either return a ragged # array or clip all inner dims that have nans completely x = x.flatten() y = y.flatten() z = z.flatten() filter_nans = np.logical_and(~np.isnan(x), ~np.isnan(y)) x_to_plot, y_to_plot, z_to_plot = reshape_2D_data( x[filter_nans], y[filter_nans], z[filter_nans] ) return x_to_plot, y_to_plot, z_to_plot def _scale_formatter(tick_value: float, pos: int, factor: float) -> str: """ Function for matplotlib.ticker.FuncFormatter that scales the tick values according to the given `scale` value. """ return f"{tick_value*factor:g}" def _make_rescaled_ticks_and_units( data_dict: DSPlotData, ) -> tuple[matplotlib.ticker.FuncFormatter, str]: """ Create a ticks formatter and a new label for the data that is to be used on the axes where the data is plotted. For example, if values of data are all "nano" in units of volts "V", then the plot might be more readable if the tick formatter would show values like "1" instead of "0.000000001" while the units in the axis label are changed from "V" to "nV" ('n' is for 'nano'). The units for which unit prefixes are added can be found in `qcodes.utils.plotting._UNITS_FOR_RESCALING`. For all other units an exponential scaling factor is added to the label i.e. `(10^3 x e^2/hbar)`. Args: data_dict: A dictionary of the following structure { 'data': <1D numpy array of points>, 'name': <name of the parameter>, 'label': <label of the parameter or ''>, 'unit': <unit of the parameter or ''> } Returns: A tuple with the ticks formatter (matlplotlib.ticker.FuncFormatter) and the new label. """ from matplotlib.ticker import FuncFormatter unit = data_dict["unit"] maxval = np.nanmax(np.abs(data_dict["data"])) prefix, selected_scale = find_scale_and_prefix(maxval, unit) new_unit = prefix + unit label = _get_label_of_data(data_dict) new_label = _make_axis_label(label, new_unit) scale_factor = 10 ** (-selected_scale) ticks_formatter = FuncFormatter(partial(_scale_formatter, factor=scale_factor)) return ticks_formatter, new_label def _rescale_ticks_and_units( ax: Axes, data: Sequence[DSPlotData], cax: Colorbar | None = None, ) -> None: """ Rescale ticks and units for the provided axes as described in :func:`~_make_rescaled_ticks_and_units` """ # for x axis if not _is_string_valued_array(data[0]["data"]): x_ticks_formatter, new_x_label = _make_rescaled_ticks_and_units(data[0]) ax.xaxis.set_major_formatter(x_ticks_formatter) ax.set_xlabel(new_x_label) # for y axis if not _is_string_valued_array(data[1]["data"]): y_ticks_formatter, new_y_label = _make_rescaled_ticks_and_units(data[1]) ax.yaxis.set_major_formatter(y_ticks_formatter) ax.set_ylabel(new_y_label) # for z aka colorbar axis if cax is not None and len(data) > 2: if not _is_string_valued_array(data[2]["data"]): z_ticks_formatter, new_z_label = _make_rescaled_ticks_and_units(data[2]) cax.set_label(new_z_label) cax.formatter = z_ticks_formatter cax.update_ticks() def _is_string_valued_array(values: np.ndarray) -> bool: """ Check if the given 1D numpy array contains categorical data, or, in other words, if it is string-valued. Args: values: A 1D numpy array of values Returns: True, if the array contains string; False otherwise """ return isinstance(values[0], str)