ai-agents-for-beginners

KI-Agenten für Einsteiger - Ein Kurs

Generative KI für Einsteiger

11 Lektionen, die alles vermitteln, was Sie wissen müssen, um mit dem Bau von KI-Agenten zu beginnen

GitHub license GitHub contributors GitHub issues GitHub pull-requests PRs Welcome

🌐 Mehrsprachige Unterstützung

Unterstützt durch GitHub Action (Automatisiert & Immer aktuell)

Französisch Spanisch Deutsch Russisch Arabisch Persisch (Farsi) Urdu Chinesisch (Vereinfacht) Chinesisch (Traditionell, Macau) Chinesisch (Traditionell, Hongkong) Chinesisch (Traditionell, Taiwan) Japanisch Koreanisch Hindi Bengalisch Marathi Nepalesisch Punjabi (Gurmukhi) Portugiesisch (Portugal) Portugiesisch (Brasilien) Italienisch Polnisch Türkisch Griechisch Thailändisch Schwedisch Dänisch Norwegisch Finnisch Niederländisch Hebräisch Vietnamesisch Indonesisch Malaiisch Tagalog (Filipino) Suaheli Ungarisch Tschechisch Slowakisch Rumänisch Bulgarisch Serbisch (Kyrillisch) Kroatisch Slowenisch Ukrainisch Birmanisch (Myanmar)

Falls Sie zusätzliche Übersetzungen wünschen, finden Sie die unterstützten Sprachen hier

GitHub watchers GitHub forks GitHub stars

Azure AI Discord

🌱 Erste Schritte

Dieser Kurs umfasst 11 Lektionen, die die Grundlagen des Aufbaus von KI-Agenten behandeln. Jede Lektion behandelt ein eigenes Thema, sodass Sie überall beginnen können!

Es gibt eine mehrsprachige Unterstützung für diesen Kurs. Gehen Sie zu unseren verfügbaren Sprachen hier.

Falls Sie zum ersten Mal mit generativen KI-Modellen arbeiten, schauen Sie sich unseren Kurs Generative KI für Einsteiger an, der 21 Lektionen zum Arbeiten mit GenAI umfasst.

Vergessen Sie nicht, dieses Repository zu favorisieren (🌟) und dieses Repository zu forken, um den Code auszuführen.

Treffen Sie andere Lernende, lassen Sie sich helfen

Falls Sie nicht weiterkommen oder Fragen zum Aufbau von KI-Agenten haben, treten Sie unserem dedizierten Discord-Kanal in der Azure AI Foundry Community Discord bei.

Was Sie benötigen

Jede Lektion in diesem Kurs enthält Codebeispiele, die im Ordner code_samples zu finden sind. Sie können dieses Repository forken, um Ihre eigene Kopie zu erstellen.

Die Codebeispiele in diesen Übungen nutzen Azure AI Foundry und GitHub Model Catalogs, um mit Sprachmodellen zu interagieren:

Dieser Kurs verwendet außerdem die folgenden KI-Agenten-Frameworks und -Dienste von Microsoft:

Weitere Informationen zur Ausführung des Codes für diesen Kurs finden Sie unter Kurs-Setup.

🙏 Möchten Sie helfen?

Haben Sie Vorschläge oder Rechtschreib- oder Codefehler gefunden? Erstellen Sie ein Issue oder erstellen Sie einen Pull-Request.

📂 Jede Lektion enthält

🗃️ Lektionen

Lektion Text & Code Video Zusätzliches Lernen
Einführung in KI-Agenten und Anwendungsfälle Link Video Link
Erkundung von KI-Agenten-Frameworks Link Video Link
Verständnis von Agenten-Designmustern Link Video Link
Designmuster für Werkzeugnutzung Link Video Link
Agentic RAG Link Video Link
Vertrauenswürdige KI-Agenten aufbauen Link Video Link
Planungs-Designmuster Link Video Link
Multi-Agenten-Designmuster Link Video Link
Metakognitions-Designmuster Link Video Link
KI-Agenten in der Produktion Link Video Link
Verwendung von Agenten-Protokollen (MCP, A2A und NLWeb) Link Video Link
Kontext-Engineering für KI-Agenten Erscheint am 3. September    
Verwaltung von agentischem Gedächtnis Erscheint - 10. September    
Bewertung von KI-Agenten Erscheint - 17. September    
Aufbau von Computer-Nutzungs-Agenten (CUA) Erscheint - 24. September    
Einsatz skalierbarer Agenten Erscheint - 25. September    
Erstellung lokaler KI-Agenten Erscheint - 2. Oktober    
Sicherung von KI-Agenten Erscheint - 9. Oktober    

🎒 Weitere Kurse

Unser Team bietet weitere Kurse an! Schau dir diese an:

🌟 Dank an die Community

Vielen Dank an Shivam Goyal für die Bereitstellung wichtiger Codebeispiele zur Demonstration von Agentic RAG.

Mitwirken

Dieses Projekt begrüßt Beiträge und Vorschläge. Die meisten Beiträge erfordern, dass du einer Contributor License Agreement (CLA) zustimmst, die erklärt, dass du das Recht hast und tatsächlich gewährst, uns die Rechte zur Nutzung deines Beitrags zu übertragen. Weitere Details findest du unter https://cla.opensource.microsoft.com.

Wenn du eine Pull-Anfrage einreichst, wird ein CLA-Bot automatisch feststellen, ob du eine CLA bereitstellen musst, und die PR entsprechend kennzeichnen (z. B. Statusprüfung, Kommentar). Folge einfach den Anweisungen des Bots. Du musst dies nur einmal für alle Repositories tun, die unsere CLA verwenden.

Dieses Projekt hat den Microsoft Open Source Code of Conduct übernommen. Weitere Informationen findest du in den Code of Conduct FAQ oder kontaktiere opencode@microsoft.com bei weiteren Fragen oder Kommentaren.

Marken

Dieses Projekt kann Marken oder Logos für Projekte, Produkte oder Dienstleistungen enthalten. Die autorisierte Nutzung von Microsoft Marken oder Logos unterliegt und muss den Microsoft Trademark & Brand Guidelines folgen. Die Verwendung von Microsoft-Marken oder -Logos in modifizierten Versionen dieses Projekts darf keine Verwirrung stiften oder eine Unterstützung durch Microsoft implizieren. Die Nutzung von Marken oder Logos Dritter unterliegt den Richtlinien dieser Dritten.


Haftungsausschluss:
Dieses Dokument wurde mit dem KI-Übersetzungsdienst Co-op Translator übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben.